Geotechnical and thermal analysis and complex impedance spectroscopy characterization of pure Moroccan bentonite material for civil engineering applications
Abstract
Combined modulus and impedance spectra are employed in the present work to explore electrical inhomogeneity and carriers’ behaviors in a pure bentonite Moroccan clay based on equivalent circuit. It has been clearly observed that the electrical properties change due to the increase of temperature from 300 °C to 700 °C. The frequency-dependent imaginary modulus M" and imaginary impedance Z" curves has only one peak at each temperature indicating the predominance of the contribution of grains to the total electrical conduction in bentonite. The positions of these peaks move to higher frequencies when the temperature increases in relation with the distribution of relaxation time. Moreover, the activation energy for the conduction process in bentonite is determined from the slope of ln(ρdc) versus of 1/T in the order of 700 meV in good agreement with that obtained from the proposed equivalent circuit. On the other hand, let’s present a geotechnical study that show that our material is a swelling clay, very plastic and could be used as a binder. The external stress dependence of the bulk density, Young’s module and maximum stress are analysed. The thermal conductivity determined following the device of Lee's disks where two copper disks of thickness of 15 mm and diameter of 30 mm were used
Downloads
References
Huang, Y., Wu, K., Xing, Z., Zhang, C., Hu, X., Guo, P., Zhang, J., Li, J. (2019). Understanding the validity of impedance and modulus spectroscopy on exploring electrical heterogeneity in dielectric ceramics. Journal of Applied Physics, 125 (8), 084103. doi: https://doi.org/10.1063/1.5081842
Essaleh, M., Bouferra, R., Belhouideg, S., Oubani, M., Bouchehma, A., Benjelloun, M. (2022). Electrical characterisation and analysis of dominant contributions in disordered semiconducting systems with an application to the pure bentonite material for civil engineering applications. EUREKA: Physics and Engineering, 6, 164–174. doi: https://doi.org/10.21303/2461-4262.2022.002628
Bouchehma, A., Essaleh, M., Bouferra, R., Belhouideg, S., Benjelloun, M., Sfa, I. (2022). Analysis of frequency dependence of complex impedance and electrical characterization of Fe2O3/kaolin ceramics for civil engineering applications. EUREKA: Physics and Engineering, 5, 175–183. doi: https://doi.org/10.21303/2461-4262.2022.002312
Dlamini, M. C., Maubane-Nkadimeng, M. S., Moma, J. A. (2021). The use of TiO2/clay heterostructures in the photocatalytic remediation of water containing organic pollutants: A review. Journal of Environmental Chemical Engineering, 9 (6), 106546. doi: https://doi.org/10.1016/j.jece.2021.106546
El-Naggar, M. E., Wassel, A. R., Shoueir, K. (2021). Visible-light driven photocatalytic effectiveness for solid-state synthesis of ZnO/natural clay/TiO2 nanoarchitectures towards complete decolorization of methylene blue from aqueous solution. Environmental Nanotechnology, Monitoring & Management, 15, 100425. doi: https://doi.org/10.1016/j.enmm.2020.100425
Sedaghat, M. E., Rajabpour Booshehri, M., Nazarifar, M. R., Farhadi, F. (2014). Surfactant modified bentonite (CTMAB-bentonite) as a solid heterogeneous catalyst for the rapid synthesis of 3,4-dihydropyrano[c]chromene derivatives. Applied Clay Science, 95, 55–59. doi: https://doi.org/10.1016/j.clay.2014.02.016
Pineda-Piñón, J., Vega-Durán, J. T., Manzano-Ramírez, A., Prokhorov, E., Morales-Sánchez, E., González-Hernández, J. (2008). Mechanical properties and humidity absorption measured through impedance spectroscopy in clays used for adobe production. Applied Clay Science, 40 (1-4), 1–5. doi: https://doi.org/10.1016/j.clay.2007.06.006
Barsoukov, E., Macdonald, J. R. (Eds.) (2005). Impedance Spectroscopy: Theory, Experiment, and Applications. John Wiley & Sons, Inc. doi: https://doi.org/10.1002/0471716243
Elliott, S. R. (1978). Temperature dependence of a.c. conductivity of chalcogenide glasses. Philosophical Magazine B, 37 (5), 553–560. doi: https://doi.org/10.1080/01418637808226448
Jonscher, A. K. (1999). Dielectric relaxation in solids. Journal of Physics D: Applied Physics, 32 (14), R57–R70. doi: https://doi.org/10.1088/0022-3727/32/14/201
Al Kausor, M., Sen Gupta, S., Bhattacharyya, K. G., Chakrabortty, D. (2022). Montmorillonite and modified montmorillonite as adsorbents for removal of water soluble organic dyes: A review on current status of the art. Inorganic Chemistry Communications, 143, 109686. doi: https://doi.org/10.1016/j.inoche.2022.109686
Grim, R. E. (1968). Clay Mineralogy. McGraw-Hill, 596.
Shattar, S. F. A., Zakaria, N. A., Foo, K. Y. (2015). Feasibility of montmorillonite-assisted adsorption process for the effective treatment of organo-pesticides. Desalination and Water Treatment, 57 (29), 13645–13677. doi: https://doi.org/10.1080/19443994.2015.1065439
Do Nascimento, G. M. (2016). Structure of Clays and Polymer–Clay Composites Studied by X-ray Absorption Spectroscopies. Clays, Clay Minerals and Ceramic Materials Based on Clay Minerals. doi: https://doi.org/10.5772/61788
Veblen, D. R. (1990). High-Resolution Transmission Electron Microscopy and Electron Diffraction of Mixed-Layer Illite/Smectite: Experimental Results. Clays and Clay Minerals, 38 (1), 1–13. doi: https://doi.org/10.1346/ccmn.1990.0380101
Abdel Zaher, M. S., Abdel Wahab, S. M., Taha, M. H., Masoud, A. M. (2018). Sorption Characteristics of Iron, Fluoride and Phosphate from Wastewater of Phosphate Fertilizer Plant using Natural Sodium Bentonite. Journal of Membrane Science & Technology, 08 (02). doi: https://doi.org/10.4172/2155-9589.1000186
Kumar, A., Lingfa, P. (2020). Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Materials Today: Proceedings, 22, 737–742. doi: https://doi.org/10.1016/j.matpr.2019.10.037
Hein, A., Müller, N. S., Day, P. M., Kilikoglou, V. (2008). Thermal conductivity of archaeological ceramics: The effect of inclusions, porosity and firing temperature. Thermochimica Acta, 480 (1-2), 35–42. doi: https://doi.org/10.1016/j.tca.2008.09.012
Randazzo, L., Montana, G., Hein, A., Castiglia, A., Rodonò, G., Donato, D. I. (2016). Moisture absorption, thermal conductivity and noise mitigation of clay based plasters: The influence of mineralogical and textural characteristics. Applied Clay Science, 132-133, 498–507. doi: https://doi.org/10.1016/j.clay.2016.07.021
Hein, A., Karatasios, I., Müller, N. S., Kilikoglou, V. (2013). Heat transfer properties of pyrotechnical ceramics used in ancient metallurgy. Thermochimica Acta, 573, 87–94. doi: https://doi.org/10.1016/j.tca.2013.09.024
Irvine, J. T. S., Sinclair, D. C., West, A. R. (1990). Electroceramics: Characterization by Impedance Spectroscopy. Advanced Materials, 2 (3), 132–138. doi: https://doi.org/10.1002/adma.19900020304
Althobaiti, M. G., Belhaj, M., Abdel-Baset, T., Bashal, A. H., Alotaibi, A. A. (2022). Structural, dielectric and electrical properties of new Ni-dopedcopper/bentonite composite. Journal of King Saud University - Science, 34 (5), 102127. doi: https://doi.org/10.1016/j.jksus.2022.102127
Assar, S. T., El-Ghazzawy, E. H., Abosheiasha, H. F. (2022). Study on dielectric properties, electric modulus, and impedance spectroscopy of Ni–Ca ferrite nanoparticles. Materials Chemistry and Physics, 287, 126336. doi: https://doi.org/10.1016/j.matchemphys.2022.126336
El Asri, S., El Hadri, M., Rahim, M. A., Essaleh, L., Ahamdane, H., Hajji, L. et al. (2022). Structural, microstructure and ac impedance spectroscopy investigation of parent and M-doped forsterite Mg1.9M0.1SiO4 (M= Co, Ni and Mn). Physica B: Condensed Matter, 643, 414127. doi: https://doi.org/10.1016/j.physb.2022.414127
Marín, G., Essaleh, L., Amhil, S., Wasim, S. M., Bouferra, R., Zoubir, A. et al. (2020). Electrical impedance spectroscopy characterization of n type Cu5In9Se16 semiconductor compound. Physica B: Condensed Matter, 593, 412283. doi: https://doi.org/10.1016/j.physb.2020.412283
Bouchehma, A., Essaleh, L., Marín, G., Essaleh, M., Wasim, S. M., Amhil, S. et al. (2021). Dielectric spectroscopy of n type Cu5In9Se16 semiconductor compound. Physica B: Condensed Matter, 622, 413356. doi: https://doi.org/10.1016/j.physb.2021.413356
Olmsted, D. L., Foiles, S. M., Holm, E. A. (2009). Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Materialia, 57 (13), 3694–3703. doi: https://doi.org/10.1016/j.actamat.2009.04.007
Bai, W., Chen, G., Zhu, J. Y., Yang, J., Lin, T., Meng, X. J. et al. (2012). Dielectric responses and scaling behaviors in Aurivillius Bi6Ti3Fe2O18 multiferroic thin films. Applied Physics Letters, 100 (8), 082902. doi: https://doi.org/10.1063/1.3688033

Copyright (c) 2023 Mohamed Essaleh, Rachid Bouferra, Imad Kadiri, Soufiane Belhouideg, Mohammed Mansori, Abdeltif Bouchehma, Mohamed Oubani, Mohamed Benjelloun

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.