Electrical characterisation and analysis of dominant contributions in disordered semiconducting systems with an application to the pure bentonite material for civil engineering applications

Keywords: semiconductors, Bentonite Clay material, Complex impedance spectroscopy


Semiconductors and clay materials have significant applications in environmental, civil engineering and optoelectronic sectors. The application of an electric field to such systems is subject of many works. However, to understand the behaviour of such materials under the influence of an electric field, the perception of its electrical properties is essential. In the present study, the powerful technique of complex impedance spectroscopy (CIS) is introduced to illustrate the electrical characteristics of two types of disordered semiconducting materials. These are Cu5In9Se16, an ordered defect compound of the I-III-VI2 family and a novel bentonite clay system which is an insulator at room temperature and semiconductor above 400 °C. Na-bentonite has been studied extensively because of its strong adsorption capacity and complexation ability while Cu5In9Se16 is considered for its use in solar and phtovoltaique domain. Some of selenides have turned out to be leading materials for electro-optical devices and the tellurides for thermoelectric power generation. It is very likely that study of bentonite clay and other similar materials may lead to the technology of heterojunction and clay composite. The frequency dependence of conductivity of bentonite was investigated using an impedance analyzer in the frequency range (20 Hz–1 MHz). The experimental data of CIS are analyzed using some analytical methods that take into account the effect of the grains and grain boundaries. The impedance data confirm the non-Debye behavior in these systems. Some important parameters related to the identified dominant contribution such as relaxation time and activation energies are estimated for the studied materials in the considered temperature and frequency ranges


Download data is not yet available.

Author Biographies

Mohamed Essaleh, Cadi-Ayyad University

Geosciences, Geonvironnement and Civil Engineering Laboratory

Rachid Bouferra, Cadi-Ayyad University

Geosciences, Geonvironnement and Civil Engineering Laboratory

Soufiane Belhouideg, Sultan Moulay Slimane University

Research Laboratory of Physics and Engineers Sciences

Team of Applied Physics and New Technologies

Mohamed Oubani, Cadi-Ayyad University


Abdeltif Bouchehma, Sultan Moulay Slimane University

Research Laboratory of Physics and Engineers Sciences

Team of Applied Physics and New Technologies

Mohamed Benjelloun, Cadi-Ayyad University

Geosciences, Geonvironnement and Civil Engineering Laboratory


Sahu, M., Minnam Reddy, V. R., Park, C., Sharma, P. (2021). Review article on the lattice defect and interface loss mechanisms in kesterite materials and their impact on solar cell performance. Solar Energy, 230, 13–58. doi: https://doi.org/10.1016/j.solener.2021.10.005
Nugroho, H. S., Refantero, G., Septiani, N. L. W., Iqbal, M., Marno, S., Abdullah, H. et. al. (2022). A progress review on the modification of CZTS(e)-based thin-film solar cells. Journal of Industrial and Engineering Chemistry, 105, 83–110. doi: https://doi.org/10.1016/j.jiec.2021.09.010
Rakić, V., Rajić, N., Daković, A., Auroux, A. (2013). The adsorption of salicylic acid, acetylsalicylic acid and atenolol from aqueous solutions onto natural zeolites and clays: Clinoptilolite, bentonite and kaolin. Microporous and Mesoporous Materials, 166, 185–194. doi: https://doi.org/10.1016/j.micromeso.2012.04.049
Horpibulsuk, S., Yangsukkaseam, N., Chinkulkijniwat, A., Du, Y. J. (2011). Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite. Applied Clay Science, 52 (1–2), 150–159. doi: https://doi.org/10.1016/j.clay.2011.02.014
Katariya, A., Rani, J. (2021). Review on two-dimensional organic semiconductors for thin film transistor application. Materials Today: Proceedings, 46, 2322–2325. doi: https://doi.org/10.1016/j.matpr.2021.04.401
Kar, P., Shukla, K., Jain, P., Sathiyan, G., Gupta, R. K. (2021). Semiconductor based photocatalysts for detoxification of emerging pharmaceutical pollutants from aquatic systems: A critical review. Nano Materials Science, 3 (1), 25–46. doi: https://doi.org/10.1016/j.nanoms.2020.11.001
Zhang, S. B., Wei, S.-H., Zunger, A., Katayama-Yoshida, H. (1998). Defect physics of the CuInSe2 chalcopyrite semiconductor. Physical Review B, 57 (16), 9642–9656. doi: https://doi.org/10.1103/physrevb.57.9642
Rincón, C., Wasim, S. M., Marı́n, G. (2002). Scattering of the charge carriers by ordered arrays of defect pairs in ternary chalcopyrite semiconductors. Applied Physics Letters, 80 (6), 998–1000. doi: https://doi.org/10.1063/1.1447597
Ando, Y., Khatri, I., Matsumori, H., Sugiyama, M., Nakada, T. (2019). Epitaxial Cu(In,Ga)Se2 Thin Films on Mo Back Contact for Solar Cells. Physica Status Solidi (a), 216 (16), 1900164. doi: https://doi.org/10.1002/pssa.201900164
Raguse, J. M., Muzzillo, C. P., Sites, J. R., Mansfield, L. (2017). Effects of Sodium and Potassium on the Photovoltaic Performance of CIGS Solar Cells. IEEE Journal of Photovoltaics, 7 (1), 303–306. doi: https://doi.org/10.1109/jphotov.2016.2621343
Heinemann, M. D., Mainz, R., Österle, F., Rodriguez-Alvarez, H., Greiner, D., Kaufmann, C. A., Unold, T. (2017). Evolution of opto-electronic properties during film formation of complex semiconductors. Scientific Reports, 7 (1). doi: https://doi.org/10.1038/srep45463
Miliucci, M., Lucci, M., Colantoni, I., De Matteis, F., Micciulla, F., Clozza, A. et. al. (2020). Characterization of CdS sputtering deposition on low temperature pulsed electron deposition Cu(In,Ga)Se2 solar cells. Thin Solid Films, 697, 137833. doi: https://doi.org/10.1016/j.tsf.2020.137833
Terna, A. D., Elemike, E. E., Mbonu, J. I., Osafile, O. E., Ezeani, R. O. (2021). The future of semiconductors nanoparticles: Synthesis, properties and applications. Materials Science and Engineering: B, 272, 115363. doi: https://doi.org/10.1016/j.mseb.2021.115363
Kumar, A., Lingfa, P. (2020). Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Materials Today: Proceedings, 22, 737–742. doi: https://doi.org/10.1016/j.matpr.2019.10.037
Babu, A. T., Antony, R. (2019). Clay semiconductor hetero-system of SnO2/bentonite nanocomposites for catalytic degradation of toxic organic wastes. Applied Clay Science, 183, 105312. doi: https://doi.org/10.1016/j.clay.2019.105312
Dlamini, M. C., Maubane-Nkadimeng, M. S., Moma, J. A. (2021). The use of TiO2/clay heterostructures in the photocatalytic remediation of water containing organic pollutants: A review. Journal of Environmental Chemical Engineering, 9 (6), 106546. doi: https://doi.org/10.1016/j.jece.2021.106546
El-Naggar, M. E., Wassel, A. R., Shoueir, K. (2021). Visible-light driven photocatalytic effectiveness for solid-state synthesis of ZnO/natural clay/TiO2 nanoarchitectures towards complete decolorization of methylene blue from aqueous solution. Environmental Nanotechnology, Monitoring & Management, 15, 100425. doi: https://doi.org/10.1016/j.enmm.2020.100425
Bilkees, R., Khan, A. A., Javed, M., Kazmi, J., Mohamed, M. A., Khan, M. N. et. al. (2021). Dielectric relaxation and variable range hopping conduction in sol-gel auto combustion derived La0.7Bi0.3Fe0.5Mn0.5O3 manganite. Materials Science and Engineering: B, 269, 115153. doi: https://doi.org/10.1016/j.mseb.2021.115153
Hsu, C.-C., Chou, C.-H., Jhang, W.-C., Chen, P.-T. (2019). A study of variable range hopping conduction of a sol-gel ZnSnO thin film transistor using low temperature measurements. Physica B: Condensed Matter, 569, 80–86. doi: https://doi.org/10.1016/j.physb.2019.05.036
Ganaie, M., Zulfequar, M. (2021). Dielectric investigation of In4Se96-xSx semiconductor: Relaxation and conduction mechanism. Microelectronics Reliability, 116, 114018. doi: https://doi.org/10.1016/j.microrel.2020.114018
Essaleh, L., Amhil, S., Wasim, S. M., Marín, G., Choukri, E., Hajji, L. (2018). Theoretical and experimental study of AC electrical conduction mechanism in the low temperature range of p-CuIn3Se5. Physica E: Low-Dimensional Systems and Nanostructures, 99, 37–42. doi: https://doi.org/10.1016/j.physe.2018.01.012
Elliott, S. (1994). Frequency-dependent conductivity in ionically and electronically conducting amorphous solids. Solid State Ionics, 70–71, 27–40. doi: https://doi.org/10.1016/0167-2738(94)90284-4
Chen, R. H., Wang, R.-J., Chen, T. M., Shern, C. S. (2000). Studies on the dielectric properties and structural phase transition of K2SO4 crystal. Journal of Physics and Chemistry of Solids, 61 (4), 519–527. doi: https://doi.org/10.1016/s0022-3697(99)00246-2
El-Mallah, H. M. (2012). AC Electrical Conductivity and Dielectric Properties of Perovskite (Pb,Ca)TiO3Ceramic. Acta Physica Polonica A, 122 (1), 174–179. doi: https://doi.org/10.12693/aphyspola.122.174
Mao, W., Xiong, B., Li, Q., Zhou, Y., Yin, C., Liu, Y., He, C. (2015). Influences of defects and Sb valence states on the temperature dependent conductivity of Sb doped SnO 2 thin films. Physics Letters A, 379 (36), 1946–1950. doi: https://doi.org/10.1016/j.physleta.2015.06.033
Rincón, C., Wasim, S. M., Marı́n, G., Márquez, R., Nieves, L., Pérez, G. S., Medina, E. (2001). Temperature dependence of the optical energy gap and Urbach’s energy of CuIn5Se8. Journal of Applied Physics, 90 (9), 4423–4428. doi: https://doi.org/10.1063/1.1405144
Marín, G., Essaleh, L., Amhil, S., Wasim, S. M., Bouferra, R., Zoubir, A. et. al. (2020). Electrical impedance spectroscopy characterization of n type Cu5In9Se16 semiconductor compound. Physica B: Condensed Matter, 593, 412283. doi: https://doi.org/10.1016/j.physb.2020.412283
Angar, Y., Djelali, N.-E., Kebbouche-Gana, S. (2016). Kinetic and thermodynamic studies of the ammonium ions adsorption onto natural Algerian bentonite. Desalination and Water Treatment, 57 (53), 25696–25704. doi: https://doi.org/10.1080/19443994.2016.1157046
Sinclair, D. C., West, A. R. (1989). Impedance and modulus spectroscopy of semiconducting BaTiO3showing positive temperature coefficient of resistance. Journal of Applied Physics, 66 (8), 3850–3856. doi: https://doi.org/10.1063/1.344049
Sen, S., Pramanik, P., Choudhary, R. N. P. (2005). Impedance spectroscopy study of the nanocrystalline ferroelectric (PbMg)(ZrTi)O3 system. Applied Physics A, 82 (3), 549–557. doi: https://doi.org/10.1007/s00339-005-3330-1
Macedo, P. B., Moynihan, C. T., Bose, R. (1972). The Role of Ionic Diffusion in Polarization in Vitreous Ionic Conductors. Physics and Chemistry Glasses, 13, 171–179.
Schneider, K., Dziubaniuk, M., Wyrwa, J. (2019). Impedance Spectroscopy of Vanadium Pentoxide Thin Films. Journal of Electronic Materials, 48 (6), 4085–4091. doi: https://doi.org/10.1007/s11664-019-07166-x
Bhattacharya, G., Chaudhary, N. V. P., Adhikary, T., Aich, S., Venimadhav, A. (2021). Electron transport characteristics of FeGa, Ni/n-Si junctions by impedance spectroscopy. Superlattices and Microstructures, 156, 106958. doi: https://doi.org/10.1016/j.spmi.2021.106958
Mančić, D., Paunović, V., Petrušić, Z., Radmanović, M., Živković, L. (2009). Application of Impedance Spectroscopy for Electrical Characterization of Ceramics Materials. Electronics, 13 (1), 11–17.
Irvine, J. T. S., Sinclair, D. C., West, A. R. (1990). Electroceramics: Characterization by Impedance Spectroscopy. Advanced Materials, 2 (3), 132–138. doi: https://doi.org/10.1002/adma.19900020304
Olmsted, D. L., Holm, E. A., Foiles, S. M. (2009). Survey of computed grain boundary properties in face-centered cubic metals – II: Grain boundary mobility. Acta Materialia, 57 (13), 3704–3713. doi: https://doi.org/10.1016/j.actamat.2009.04.015
Bai, W., Chen, G., Zhu, J. Y., Yang, J., Lin, T., Meng, X. J. et. al. (2012). Dielectric responses and scaling behaviors in Aurivillius Bi6Ti3Fe2O18 multiferroic thin films. Applied Physics Letters, 100 (8), 082902. doi: https://doi.org/10.1063/1.3688033
Electrical characterisation and analysis of dominant contributions in disordered semiconducting systems with an application to the pure bentonite material for civil engineering applications

👁 54
⬇ 77
How to Cite
Essaleh, M., Bouferra, R., Belhouideg, S., Oubani, M., Bouchehma, A., & Benjelloun, M. (2022). Electrical characterisation and analysis of dominant contributions in disordered semiconducting systems with an application to the pure bentonite material for civil engineering applications. EUREKA: Physics and Engineering, (6), 164-174. https://doi.org/10.21303/2461-4262.2022.002628
Material Science

Most read articles by the same author(s)