Effect of particle size on ignition and oxidation of single aluminum: molecular dynamics study
Abstract
Alumina nanoparticle is one of the attractive nanoparticles synthesized by the plasma method. The oxidation step in this method is challenging to explain experimentally. This work was to perform a molecular dynamics simulation to determine the oxidation mechanism of aluminum nanoparticles with different sizes and oxidation levels in the oxide layer. This work was to perform a molecular dynamics simulation to determine the oxidation mechanism of aluminum nanoparticles with different sizes and oxidation levels in the oxide layer. The simulation method employed the ReaxFF potential. The material used is aluminum nanoparticles in three different sizes (8, 12, and 16 nm) with an oxide layer thickness of 0.5 nm. Aluminum nanoparticles were given a relaxation treatment of 300 K for 1 ps and then heated to a temperature of 3250 K with a heating rate of 5×1013 K/s and cooled to 300 K. The ensemble used is a canonical ensemble with the Nose/Hoover thermostat method. The result shows that the higher the temperature applied to the system, the more oxygen molecules adsorption occurs on the surface of the oxide layer and the diffusion of oxygen to the particle core. The higher temperature applied also causes gaps, or void spaces, between the core and the shell. The reaction barrier for diffusion of oxygen also decreased significantly due to void space, and the surface of the aluminum core dissociates to the surface (alumina shell). Particles with a smaller size have a shorter ignition delay time. In addition, the smaller the particle size, the more oxygen molecules' reacted with aluminum particles in the particle core
Downloads
References
Suresh, K., Selvarajan, V., Vijay, M. (2008). Synthesis of nanophase alumina, and spheroidization of alumina particles, and phase transition studies through DC thermal plasma processing. Vacuum, 82 (8), 814–820. doi: https://doi.org/10.1016/j.vacuum.2007.11.008
Washburn, E. B., Trivedi, J. N., Catoire, L., Beckstead, M. W. (2008). The Simulation of the Combustion of Micrometer-Sized Aluminum Particles with Steam. Combustion Science and Technology, 180 (8), 1502–1517. doi: https://doi.org/10.1080/00102200802125594
Zhou, Y., Liu, J., Liang, D., Shi, W., Yang, W., Zhou, J. (2017). Effect of particle size and oxygen content on ignition and combustion of aluminum particles. Chinese Journal of Aeronautics, 30 (6), 1835–1843. doi: https://doi.org/10.1016/j.cja.2017.09.006
Shuaibov, A., Minya, A., Malinina, A., Malinin, A., Gomoki, Z. (2020). Synthesis of aluminum oxide nanoparticles in overstressed nanosecond discharge plasma with the ectonic sputtering mechanism of aluminum electrodes. Highlights in BioScience, 3. doi: https://doi.org/10.36462/H.BioSci.20211
Gromov, A. A., Strokova, Y. I., Teipel, U. (2009). Stabilization of Metal Nanoparticles - A Chemical Approach. Chemical Engineering & Technology, 32 (7), 1049–1060. doi: https://doi.org/10.1002/ceat.200900022
Sundaram, D. S., Yang, V., Zarko, V. E. (2015). Combustion of nano aluminum particles (Review). Combustion, Explosion, and Shock Waves, 51 (2), 173–196. doi: https://doi.org/10.1134/s0010508215020045
Nurdiansyah, H., A, M. M., Ridha, F. (2020). Aluminum Combustion under Different Condition: A Review. Journal of Energy Mechanical Material and Manufacturing Engineering, 5 (2), 1. doi: https://doi.org/10.22219/jemmme.v5i2.12550
Zhang, C., Yao, Y., Chen, S. (2014). Size-dependent surface energy density of typically fcc metallic nanomaterials. Computational Materials Science, 82, 372–377. doi: https://doi.org/10.1016/j.commatsci.2013.10.015
Usharani, S., Rajendran, V. (2018). Size Controlled Synthesis and Characterization of V2O5/Al2O3 Nanocomposites. Colloid and Interface Science Communications, 24, 7–12. doi: https://doi.org/10.1016/j.colcom.2018.03.001
Sharma, A. K., Tiwari, A. K., Dixit, A. R. (2016). Characterization of TiO2, Al2O3 and SiO2 Nanoparticle based Cutting Fluids. Materials Today: Proceedings, 3 (6), 1890–1898. doi: https://doi.org/10.1016/j.matpr.2016.04.089
Selvan, B., Ramachandran, K., Sreekumar, K. P., Thiyagarajan, T. K., Ananthapadmanabhan, P. V. (2009). Numerical and experimental studies on DC plasma spray torch. Vacuum, 84 (4), 444–452. doi: https://doi.org/10.1016/j.vacuum.2009.09.009
Colombo, V., Ghedini, E., Sanibondi, P. (2008). Thermodynamic and transport properties in non-equilibrium argon, oxygen and nitrogen thermal plasmas. Progress in Nuclear Energy, 50 (8), 921–933. doi: https://doi.org/10.1016/j.pnucene.2008.06.002
Gleizes, A., Gonzalez, J. J., Freton, P. (2005). Thermal plasma modelling. Journal of Physics D: Applied Physics, 38 (9), R153. doi: https://doi.org/10.1088/0022-3727/38/9/R01
Ananthapadmanabhan, P. V., Thiyagarajan, T. K., Sreekumar, K. P., Venkatramani, N. (2004). Formation of nano-sized alumina by in-flight oxidation of aluminium powder in a thermal plasma reactor. Scripta Materialia, 50 (1), 143–147. doi: https://doi.org/10.1016/j.scriptamat.2003.09.001
Li, Y., Clark, R., Nakano, A., Kalia, R., Vashishta, P. (2012). Molecular Dynamics Study of Size Dependence of Combustion of Aluminum Nanoparticles. MRS Proceedings, 1405. doi: https://doi.org/10.1557/opl.2012.346
Liu, P., Liu, J., Wang, M. (2019). Ignition and combustion of nano-sized aluminum particles: A reactive molecular dynamics study. Combustion and Flame, 201, 276–289. doi: https://doi.org/10.1016/j.combustflame.2018.12.033
Zeng, H., Cheng, X., Zhang, C., Lu, Z. (2018). Responses of Core–Shell Al/Al2O3 Nanoparticles to Heating: ReaxFF Molecular Dynamics Simulations. The Journal of Physical Chemistry C, 122 (16), 9191–9197. doi: https://doi.org/10.1021/acs.jpcc.8b01088
Hong, S., van Duin, A. C. T. (2015). Molecular Dynamics Simulations of the Oxidation of Aluminum Nanoparticles using the ReaxFF Reactive Force Field. The Journal of Physical Chemistry C, 119 (31), 17876–17886. doi: https://doi.org/10.1021/acs.jpcc.5b04650
Huang, Y., Risha, G. A., Yang, V., Yetter, R. A. (2009). Effect of particle size on combustion of aluminum particle dust in air. Combustion and Flame, 156 (1), 5–13. doi: https://doi.org/10.1016/j.combustflame.2008.07.018
Sundaram, D. S., Puri, P., Yang, V. (2016). A general theory of ignition and combustion of nano- and micron-sized aluminum particles. Combustion and Flame, 169, 94–109. doi: https://doi.org/10.1016/j.combustflame.2016.04.005
Bazyn, T., Krier, H., Glumac, N. (2005). Oxidizer and Pressure Effects on the Combustion of 10-micron Aluminum Particles. Journal of Propulsion and Power, 21 (4), 577–582. doi: https://doi.org/10.2514/1.12732
Chung, S. W., Guliants, E. A., Bunker, C. E., Jelliss, P. A., Buckner, S. W. (2011). Size-dependent nanoparticle reaction enthalpy: Oxidation of aluminum nanoparticles. Journal of Physics and Chemistry of Solids, 72 (6), 719–724. doi: https://doi.org/10.1016/j.jpcs.2011.02.021
Feng, Y., Xia, Z., Huang, L., Yan, X. (2016). Experimental investigation on the combustion characteristics of aluminum in air. Acta Astronautica, 129, 1–7. doi: https://doi.org/10.1016/j.actaastro.2016.06.049
Alavi, S., Mintmire, J. W., Thompson, D. L. (2004). Molecular Dynamics Simulations of the Oxidation of Aluminum Nanoparticles. The Journal of Physical Chemistry B, 109 (1), 209–214. doi: https://doi.org/10.1021/jp046196x
Zheng, Y.-T., He, M., Cheng, G., Zhang, Z., Xuan, F.-Z., Wang, Z. (2018). Effect of ionization on the oxidation kinetics of aluminum nanoparticles. Chemical Physics Letters, 696, 8–11. doi: https://doi.org/10.1016/j.cplett.2018.02.039
Wang, W., Clark, R., Nakano, A., Kalia, R. K., Vashishta, P. (2010). Effects of oxide-shell structures on the dynamics of oxidation of Al nanoparticles. Applied Physics Letters, 96 (18), 181906. doi: https://doi.org/10.1063/1.3425888
Jeurgens, L. P. H., Sloof, W. G., Tichelaar, F. D., Mittemeijer, E. J. (2002). Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. Journal of Applied Physics, 92 (3), 1649–1656. doi: https://doi.org/10.1063/1.1491591
Chu, Q., Chu, B. S., Liao, L., Luo, K. H., Wang, N., Huang, C. (2018). Ignition and Oxidation of Core–Shell Al/Al2O3 Nanoparticles in an Oxygen Atmosphere: Insights from Molecular Dynamics Simulation. The Journal of Physical Chemistry C, 122 (51), 29620–29627. doi: https://doi.org/10.1021/acs.jpcc.8b09858
van Duin, A. C. T., Zou, C., Joshi, K., Bryantsev, V., Goddard, W. A. (2013). A Reaxff Reactive Force-field for Proton Transfer Reactions in Bulk Water and its Applications to Heterogeneous Catalysis. Computational Caalysis, 223–243. doi: https://doi.org/10.1039/9781849734905-00223
Chenoweth, K., van Duin, A. C. T., Persson, P., Cheng, M.-J., Oxgaard, J., Goddard, W. A. (2008). Development and Application of a ReaxFF Reactive Force Field for Oxidative Dehydrogenation on Vanadium Oxide Catalysts. The Journal of Physical Chemistry C, 112 (37), 14645–14654. doi: https://doi.org/10.1021/jp802134x
Zheng, Y., Hong, S., Psofogiannakis, G., Rayner, Jr. G. B., Datta, S., van Duin, A. C. T., Engel-Herbert, R. (2017). Modeling and in Situ Probing of Surface Reactions in Atomic Layer Deposition. ACS Applied Materials & Interfaces, 9 (18), 15848–15856. doi: https://doi.org/10.1021/acsami.7b01618
Hong, S., Krishnamoorthy, A., Rajak, P., Tiwari, S., Misawa, M., Shimojo, F. et al. (2017). Computational Synthesis of MoS2 Layers by Reactive Molecular Dynamics Simulations: Initial Sulfidation of MoO3 Surfaces. Nano Letters, 17 (8), 4866–4872. doi: https://doi.org/10.1021/acs.nanolett.7b01727
Alavi, S., Thompson, D. L. (2006). Molecular Dynamics Simulations of the Melting of Aluminum Nanoparticles. The Journal of Physical Chemistry A, 110 (4), 1518–1523. doi: https://doi.org/10.1021/jp053318s
Boiko, V. M., Poplavski, S. V. (2002). Self-ignition and ignition of aluminum powders in shock waves. Shock Waves, 11 (4), 289–295. doi: https://doi.org/10.1007/s001930100105
Noor, F., Zhang, H., Korakianitis, T., Wen, D. (2013). Oxidation and ignition of aluminum nanomaterials. Physical Chemistry Chemical Physics, 15 (46), 20176. doi: https://doi.org/10.1039/c3cp53171f
Gesner, J., Pantoya, M. L., Levitas, V. I. (2012). Effect of oxide shell growth on nano-aluminum thermite propagation rates. Combustion and Flame, 159 (11), 3448–3453. doi: https://doi.org/10.1016/j.combustflame.2012.06.002
Li, Y., Kalia, R. K., Nakano, A., Vashishta, P. (2013). Size effect on the oxidation of aluminum nanoparticle: Multimillion-atom reactive molecular dynamics simulations. Journal of Applied Physics, 114 (13), 134312. doi: https://doi.org/10.1063/1.4823984

Copyright (c) 2023 Mahros Darsin, Boy Arief Fachri, Haidzar Nurdiansyah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.