The technical assessment of the level of innovative traction transmission of railway vehicle

Keywords: railway, train, locomotive, transport, model, innovative, reducer, reliability, efficiency, optimal

Abstract

The article deals with the development of an innovative model of traction transmissions of railway vehicles with a higher technical level, which allows to eliminate the existing shortcomings of the mechanical system, simplify the repair processes and reduce the cost, and evaluate its technical level. By reducing the overall dimensions and weight of the mechanical system, increasing reliability due to equal distribution of the load and shortening the power arm, as well as reducing the number of structural elements, increasing the useful work coefficient due to the reduction of the mass of double sliding pads and rotating parts, saving electricity and thereby improving the technical level of rail transport. Traction transmissions consisting of an innovative reducer are offered that ensure the increase.

The technical level of the proposed dart transmission is determined based on three compatibility parameters with a creative approach. Compatibility parameters are determined according to the minimum value of the geometric dimensions characterizing the mass of the mechanical system, the maximum value of the useful work coefficient characterizing economic efficiency, as well as the maximum values of the degree of reliability characterizing safety. The technical level of the proposed project transmitter is determined and compared with existing buildings, its technical and economic advantages are highlighted. As a result of the application of the proposed innovative reducers in the traction drives of railway vehicles, the basis is created for reducing the cost and maintenance costs of traction vehicles, increasing the level of traffic safety, as well as improving the traction and braking characteristics

Downloads

Download data is not yet available.

Author Biographies

Ayaz Abdullaev, Azerbaijan Technical University

Department of Mechatronics and Machine Design

Ilham Huseynov, Azerbaijan Technical University

Department of Transport Logistics and the Spirit of Safety

Israil Elyazov, Azerbaijan Technical University

Department of Transport Engineering and Technology Management

Ramin Abdullaev, Azerbaijan Technical University

Department of Transport Logistics and the Spirit of Safety

References

Huseynov, İ. D. (2020). Ölkənin dayanıqlı inkişafında dəmiryol nəqliyyatının rolu və vəzifələri. SDU konfrans materialları, 6, 330–332.

Panchenko, S., Vatulia, G., Lovska, A., Ravlyuk, V., Elyazov, I., Huseynov, I. (2022). Influence of structural solutions of an improved brake cylinder of a freight car of railway transport on its load in operation. EUREKA: Physics and Engineering, 6, 45–55. doi: https://doi.org/10.21303/2461-4262.2022.002638

Nəcəfov, Ə. M., Çələbi, İ. Q., Əmənov, Y. Ə. (2018). Maşın hissələri və konstruksiyaetmənin əsasları: Mexaniki intiqalların layihələndirilməsi. Bakı: AzTU, 316.

Abdullaev, A. I. (2012). Pat. No. EA200900893A2. Trekhstupenchatiy dvukhpotochniy tsilindricheskiy reduktor. Available at: https://patents.google.com/patent/EA200900893A2/ru

Nadzhafov, A. M., Abdullaev, A. I. (2013). O rezul'tatakh promyshlennogo ispytaniya trekhstupenchatogo dvukhpotochnogo paketnogo reduktora stanka-kachalki SKD 3-1, 5-710. Visnyk Natsionalnoho tekhnichnoho universytetu "KhPI". Ser.: Problemy mekhanichnoho pryvodu, 40, 87–91. Available at: http://nbuv.gov.ua/UJRN/vcpipmp_2013_40_18

Anur'ev, V. I. (2001). Spravochnik konstruktora-mashinostroitelya. Vol. 2. Moscow, 912.

Chernavskiy, S. A., Snesarev, G. A., Kozintsov, B. S. (1984). Proektirovanie mekhanicheskikh peredach. Moscow: Mashinostroenie, 560.

Abdullayev, A. H., Əhmədov, B. B., Mehdiyev, R. M. (2007). İkiqat sürüşmə yastıqlarında sürtünmə momentini təyin etmək üçün sınaq qurğusunun təkmilləşdirilməsi və sınaqların aparılma metodtkası. Mexanika-maşınqayırma, 4, 38–40.

Çələbi, İ. Q. (2022). Maşın və avadanlıqların ötürücü mexanizmlərinin etibarlığının qiymətləndirilməsinə sistemli yanaşma. Bakı, 56.

Abdullaev, A. I., Nadzhafov, A. M., Gamidov, N. R. (2004). Nauchnaya osnova sistemnogo rascheta, proektirovaniya i konstruirovaniya paketnogo reduktora. Мехаniка-Маşınqayırma, 2, 29–33.

Mirzəyev, H. İ. (2004). Hidravlik sürüşmə yastıqlarında хüsusi müqavimət qüvvəsinin fırlanma sürətindən və yağın özlülüyündən asılı olaraq qiymətləndirilməsi. Bakı: Azərbaycan Neft Təsərrüfatı, 9, 58–60.

Mirzəyev, H. I. (2002). Sürüşmə yastıqlarının sistemli analizi. Aspirant və gənc tədqiqatçıların elmi-teхniki konfransının məruzə materialları. Bakı: Təhsil, 107–110.

Abdullayev, A. H., Əhmədov, B. B., Mehdiyev, R. M. (2007). Sınaqların planlaşdırılması üsulu ilə idarəolunan faktorların sürüşmə sürtünməsi əmsalına təsirinin qiymətləndirilməsi. AzTU-nun Elmi Əsərlər jurnalı, 2, 6–9.

Rai, P., Barman, A. G. (2018). Design optimization of spur gear using SA and RCGA. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (5). doi: https://doi.org/10.1007/s40430-018-1180-y

Canəhmədov, Ə. X., Səmədov, Ə. S., Cavadov, M. Y. (2013). Maşın detalları və konstruksiyaetmənin əsasları. Bakı: “Apostrof”, 480.

Starzhinskiy, V. E., Basinyuk, V. L., Mardosevich, E. I. et al. (2013). Analiz publikatsiy po probleme optimizatsii komponovochnykh skhem zubchatykh mekhanizmov. Visnyk NTU "KhPI". Seriya: Problemy mekhanichnoho pryvodu, 40 (1013), 156–169.

Park, M.-W., Jeong, J.-H., Ryu, J.-H., Lee, H.-W., Park, N.-G. (2007). Development of Speed Reducer with Planocentric Involute Gearing Mechanism. Journal of Mechanical Science and Technology, 21, 1172–1177. doi: https://doi.org/10.1007/BF03179032

Miklos, I. Zs., Miklos, C. C., Alic, C. I., Raţiu, S. (2018). Analysis of gear reducer housing using the finite element method. IOP Conference Series: Materials Science and Engineering. doi: https://doi.org/10.1088/1757-899X/294/1/012034

Shakhnyuk, L. A. (2005). Optimal'noe proektirovanie mnogostupenchatykh reduktorov. VI Mezhdunarodnaya nauchno - tekhnicheskaya konferentsiya "Les-2005". Bryansk.

Chalabi, I. (2020). Comparative Service Life Analysis for Gears According to Different Failure Criteria. Journal of Failure Analysis and Prevention, 20, 2137–2144. doi: https://doi.org/10.1007/s11668-020-01029-y

Ebenezer, N. G. R., Ramabalan, S., Kumar, S. N. (2019). Practical Optimal Design on Two Stage Spur Gears Train Using Nature Inspired Algorithms. International Journal of Engineering and Advanced Technology, 8 (6), 4073–4081. doi: https://doi.org/10.35940/ijeat.f8638.088619

Yu, W., Mechefske, C. K. (2016). Analytical modeling of spur gear corner contact effects. Mechanism and Machine Theory, 96, 146–164. doi: https://doi.org/10.1016/j.mechmachtheory.2015.10.001

Marjanovic, N., Isailovic, B., Marjanovic, V., Milojevic, Z., Blagojevic, M., Bojic, M. (2012). A practical approach to the optimization of gear trains with spur gears. Mechanism and Machine Theory, 53, 1–16. doi: https://doi.org/10.1016/j.mechmachtheory.2012.02.004

Wang, X., Peng, T., Wu, P., Cui, L. (2021). Influence of electrical part of traction transmission on dynamic characteristics of railway vehicles based on electromechanical coupling model. Scientific Reports, 11 (1). doi: https://doi.org/10.1038/s41598-021-97650-4

Paul, S., Han, P.-W., Chang, J., Chun, Y.-D., Lee, J.-G. (2022). State-of-the-art review of railway traction motors for distributed traction considering South Korean high-speed railway. Energy Reports, 8, 14623–14642. doi: https://doi.org/10.1016/j.egyr.2022.10.411

Zhang, K., Yang, J., Liu, C., Wang, J., Yao, D. (2022). Dynamic Characteristics of a Traction Drive System in High-Speed Train Based on Electromechanical Coupling Modeling under Variable Conditions. Energies, 15 (3), 1202. doi: https://doi.org/10.3390/en15031202

TSA Gearbox for Stadler Rail KISS EMU for Aeroexpress. Available at: https://www.tsa.at/tsa_referenzen/stadler-rail-kiss-emu-for-aeroexpress-with-tsa-gearbox-gmk-2-58-495d/

Nadzhafov, A. M. (2008). Poiskovoe konstruirovanie mekhanicheskogo privoda shtangovykh nasosov. Baku, 256.

Nadzhafov, A. M. (2013). Poiskovoe konstruirovanie mekhanicheskogo privoda shtangovykh nasosov. Kishinev: Palmarium Academic Publishing, 156.

Huseynov, İ. D. (2022). Dəmiryol hərəkət vasitələrinin dartı intiqalının texniki səviyyəsinin qatarların hərəkətinə təsirinin tədqiqi. Doktorantların və gənc tədqiqatçıların XXV Respublika elmi konfransı. Bakı.

Buiga, O., Tudose, L. (2014). Optimal mass minimization design of a two-stage coaxial helical speed reducer with Genetic Algorithms. Advances in Engineering Software, 68, 25–32. doi: https://doi.org/10.1016/j.advengsoft.2013.11.002

Abdullaev, A. I., Rasulov, G. N., Huseynov, I. D., Ismayilov, O. F. (2022). Innovative reducer for railroad switch drives and evaluation friction work on double sliding bearings. SOCAR Proceedings, SI1. doi: https://doi.org/10.5510/ogp2022si100700

Stadler Rail KISS EMU for Aeroexpress with TSA gearbox GMK 2-58-495D. Available at: https://www.tsa.at/tsa_referenzen/stadler-rail-kiss-emu-for-aeroexpress-with-tsa-gearbox-gmk-2-58-495d-2/

The technical assessment of the level of innovative traction transmission of railway vehicle

👁 271
⬇ 162
Published
2023-05-25
How to Cite
Abdullaev, A., Huseynov, I., Elyazov, I., & Abdullaev, R. (2023). The technical assessment of the level of innovative traction transmission of railway vehicle. EUREKA: Physics and Engineering, (3), 40-51. https://doi.org/10.21303/2461-4262.2023.002823
Section
Engineering