INVESTIGATION OF THE INFLUENCE OF NANODISPERSED COMPOSITIONS OBTAINED BY PLASMOCHEMICAL SYNTHESIS ON THE CRYSTALLIZATION PROCESSES OF STRUCTURAL ALLOYS

  • Yevgen Dzhur Oles Gonchar Dnirpo National University, Ukraine
  • Alexander Kalinin SINE Prydniprovska State Academy of Civil Engineering and Architecture, Ukraine
  • Maryna Grekova Yuzhnoye State Design Office, Ukraine
  • Michael Guchenkov Yuzhnoye State Design Office, Ukraine
Keywords: structural steel, aluminum alloy, nanodispersed compositions, plasma-chemical synthesis, crystallization, structure

Abstract

The state of the problem of stabilizing the structure, improving the quality and properties of structural alloys is studied. To solve the problem, it is proposed to modify melts of low–alloyed alloys with nanodispersed compositions obtained by plasma–chemical synthesis. Process technological parameters are developed. Nanopowders of carbide and carbonitride class SiC and Ti (C, N) with a size of 50 ... 100 nm are obtained. The crystallographic parameters of the nanocompositions and the specific surface are determined, and the dependency curves are plotted. The macro– and microstructure of structural steels and alloys was studied before and after the modification. A significant (in 2 ... 3.5 times) grain refinement and stabilization of the alloy structure as a result of nanopowder modification of titanium carbonitride have been achieved. Thermodynamic calculations of the dimensions of crystalline seeds during the crystallization of steels and alloys are carried out. A complex criterial estimation of the efficiency of nanodispersed compositions in a steel melt is proposed. The features of crystallization and structure formation of modified structural steels are studied. The obtained results are of theoretical and practical importance for production of critical parts from structural steels and high–quality alloys.

Downloads

Download data is not yet available.

References

Kalinina, N. E., Kalinin, V. T., Vilishchuk, Z. V., Kalinin, A. V., Kavats, O. A. (2012). Nanomaterialy i nanotehnologiia: polucheniia, stroenie, primenenie. Dnipro: Makovetskii Yu. V., 190.

Gusev, A. I. (2005). Nanomaterialy, nanostruktury, nanotehnologii. Moscow: Fizmalit, 426.

Ioelovich, M. (2008). Cellulose as a nanostructured polymer: a short review. BioResources, 3 (4), 1403–1418.

Golovin, Yu. I. (2003). Vvedenie v nanotehnologiiu. Moscow: Mashinostroenie, 112.

Bolshakov, V. I., Tushinskii, L. I. (2010). Strukturnaia teoriia uprochneniia konstruktsionnyh stalei i drugih materialov. Dnipro: Svidler, 471.

Bolshakov, V. I., Vaganov, V. E. (2014). Uglerodosoderzhashchie nanostrukturirovanye kompozitsionnye elektrohimicheskie pokrytiia konstruktsionnogo i funktsional'nogo naznacheniia. Vestnik PGASA, 10 (199), 36–44.

Vorobieva, G. A., Skladnova, E. E., Erofeev, V. K. (2016). Konstruktsionnye stali i splavy. Moscow: NITs INFRA–M, 440.

Glushkova, D. B., Bolshakov, V. I. (2015). Povyshenie dolgovechnosti otvetstvennyh detalei stroitel'nyh mashin. Kharkiv: Tsifroprint, 236.

Gavrilin, I. V. (2000). Plavlenie i kristallizatsiia splavov. Vladimir: VSU, 260.

Vitiaz, P. A., Soltsev, K. A. (2011). Tehnologii konstruktsionnyh nanostrukturnyh materialov i pokrytii. Belarus, Minsk: Nauka, 283.

Grigorenko, G. M., Kostin, V. A., Golovko, V. V., Zhukov, V. V., Zuber, T. A. (2015). Vliianie nanoporoshkovyh inokuliatorov na strukturu i svoistva litogo metalla vysokoprochnyh nizkolegirovannyh stalei. Sovremennaia elektrometallurgiia, 2 (119), 32–41.

Nersisyan, H. H., Lee, J. H., Won, C. W. (2002). Self–propagating high–temperature synthesis of nano–sized titanium carbide powder. Journal of Materials Research, 17 (11), 2859–2864. doi: 10.1557/jmr.2002.0415

Ioelovich, M. (2014). Cellulose: Nanostructured Natural Polymer. Saarbrücken: Lambert Academic Publishing, 100.

Kavats, O. A., Kalinina, N. Ye., Kavats, D. A. (2008, January 25). Aluminium–based alloy. Patent of Ukraine No. 29674, MPK6 С22 С21/00. Appl. No. u200709848. Filed 2007, September 3. Bull. No. 2, 8.

Soh, H. T., Guarini, K. W., Quate, C. F. (2001). Scanning Probe Hidrografic. Dordrecht: Kluver Academic Plenum Publishers, 224.

Bolshakov, V. I., Uzlov, O. V., Zotov, D. S., Kovalenko, A. O. (2011). Issledovanie vliianiia chastits Ti(CBVIxD, NBVI1–xD) na svoistva stroitel'nyh stalei. Metallurgicheskaia i gornorudnaia promyshlennost', 5, 40–42.

Saburov, V. P., Eremik, E. N., Glushkova, L. I., Cherepanov, A. N. (2002). Modifitsirovanie stalei i splavov dispersnymi inokuliatorami. Omsk: OmGTU, 257.

Tushinskii, L. I. (2010). Strukturnaia teoriia uprochneniia konstruktsionnyh stalei i drugih materialov. Dnipro: Svidler A. L., 482.

Wolf, E. L. (2015). Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience. Ed. 3. John Wiley & Sons, Inc., 336.

Ajayan, P. M., Schadler, L. S., Braun, P. V. (Eds.). (2003). Nanocomposite Science and Technology. John Wiley & Sons, Inc., 230. doi: 10.1002/3527602127

Bolshakov, V. I., Razumova, O. V. (2008). Ispol'zovanie stalei povyshennoi prochnosti v novom stroitel'stve i rekonstruktsii. Dnipro: Porogi, 214.

Boguslaev, V. O., Kachan, O. Ya., Kalinina, N. E., Mozgovoi, V. F., Kalinin, V. T. (2009). Aviatsionno–kosmicheskie materialy i tehnologii. Zaporozhye: Motor Sich, 385.


👁 462
⬇ 269
Published
2017-12-01
How to Cite
Dzhur, Y., Kalinin, A., Grekova, M., & Guchenkov, M. (2017). INVESTIGATION OF THE INFLUENCE OF NANODISPERSED COMPOSITIONS OBTAINED BY PLASMOCHEMICAL SYNTHESIS ON THE CRYSTALLIZATION PROCESSES OF STRUCTURAL ALLOYS. EUREKA: Physics and Engineering, (6), 56-61. https://doi.org/10.21303/2461-4262.2017.00500
Section
Material Science