CONCEPTUAL SCHEME FOR ENSURING THE ENERGY EFFICIENCY PRINCIPLE IN MODERN CONTAINER FLEET
Abstract
As a result of the analysis of the modern merchant fleet, indicators have been revealed of an increase in the size of modern merchant vessels, which affects the overall energy efficiency. It should be noted a significant increase in the container fleet, namely, not only an increase in the number of vessels themselves, but also an increase in the average carrying capacity by almost 2.8 times. As a result, emissions to the atmosphere have also increased due to a significant increase in ship propulsion power and fuel consumption. This is due to the specifics of container traffic, namely for the rapid transportation of goods from port A to port B, for which container ships often move in all weather conditions with maximum speed, respectively, fuel consumption is enormous compared to other types of ships.
Despite the fact that the goods must be delivered as soon as possible and without delay, in practice, due to the lack of effective feedback between all participants in the transportation process, this is not always possible. The inefficiency of feedback leads to wasteful resources, which in turn increases the financial costs of the shipowner by increasing fuel consumption. It also reduces the energy efficiency of the ship and increasing emissions of harmful substances into the atmosphere.
Considering the experience of the giants of maritime transport such as MAERSK, MSC, CMA CGM, it is possible to see that all participants in the process are single unit and interested in maximum efficiency of transportation. Containers of smaller companies that do not own their terminals often face ineffective feedback and are not able to influence the situation.
The conceptual scheme proposed in the article should increase the efficiency of feedback between the vessel charter and the port, which, in turn, will increase the efficiency of sea freight. Constant access to information about the situation in the port will make it possible to avoid unnecessary delays of the ship.
Downloads
References
Sheydina, O. (2012). Okhrana okruzhayushhey sredy i energosberezhenie. Zeleneet. Available at: http://zeleneet.com/energosberezhenie-i-okruzhayushhaya-sreda/1397/
Shipping emissions 17 % of global CO2, making it the elephant in the climate negotiations room (2015). Available at: https://www.transportenvironment.org/press/shipping-emissions-17-global-co2-making-it-elephant-climate-negotiations-room
Transparency International kritikuet rabotu IMO (2018). Rabotnik morya. Available at: http://seafarers.com.ua/transparency-international-criticizes-imo/14626/
Vladimirov, S. A. (2016). The global transport and logistics system: main areas of development. Regional'naya ekonomika i energetika, 2 (46). Available at: https://eee-region.ru/article/4602/
Obzor morskogo transporta (2016). Organizatsiya ob"edinennykh natsiy. Geneva, 118. Available at: http://unctad.org/en/PublicationsLibrary/rmt2016_ru.pdf
Just-in-time. Upravlenie proizvodstvom. Available at: http://www.up-pro.ru/encyclopedia/just-in-time.html
Öztürk, E. (2013). Operational Measures For Energy Efficiency In Shipping. Journal of ETA Maritime Science, 1 (2), 65–72. Available at: https://www.journalagent.com/jems/pdfs/JEMS_1_2_65_72.pdf
Losiewicz, Z., Kaminski W. (2014). Practical Application of Ship Energy Efficiency Management Plan. Logistyka-Nauka, 3.
The economics of slow steaming (2014). Seatrade Maritime News. Available at: http://www.seatrade-maritime.com/news/americas/the-economics-of-slow-steaming.html
From management to operation in energy efficiency. International Maritime Organization. Available at: http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Documents/Air %20pollution/M3 %20TTT %20course %20Posters %20final1.pdf
Olmer, N., Comer, B., Roy, B., Mao, X., Rutherford, D. (2017). Greenhouse gas emissions from global shipping, 2013–2015. ICCT. Available at: https://www.theicct.org/sites/default/files/publications/Global-shipping-GHG-emissions-2013-2015_ICCT-Report_17102017_vF.pdf
Johnson, H., Styhre, L. (2015). Increased energy efficiency in short sea shipping through decreased time in port. Transportation Research Part A: Policy and Practice, 71, 167–178. doi: http://doi.org/10.1016/j.tra.2014.11.008
Copyright (c) 2018 Andriy Lysyy, Vitaliy Kotenko, Stanislav Yakovtsev

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.