THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFICIENCY OF THE USE OF HEAT-ACCUMULATING MATERIAL FOR HEAT SUPPLY SYSTEMS
Abstract
As a result of research, the conditions for the effective use of the volume of heat accumulator based on solid materials were determined. In the course of research, various schemes of the device of tubular heating elements for charging the channel elements of the heat accumulator were considered. Fire clay was used as a heat-accumulating material, capable of operating in a wide temperature range (up to 600 °С). Mathematical modeling of temperature change in the process of discharge over the cross section of the heat-accumulating unit has been carried out. Mathematical modeling was carried out using an application package that allows to obtain the temperature distribution over the cross section of the heat accumulator at key points of its work. The obtained simulation results were tested on an experimental setup consisting of four heat-accumulating units during the charging process and during the discharge of the heat accumulator. According to the research results, the most effective layout of the heating elements was determined, which allows to make the most of the volume of the heat-accumulating material. The dependencies to determine the exponent and the averaging coefficient of the heat flux are also found, which allow a more rational use of the volume of the accumulating nozzle.
The research results can be used to reconstruct decentralized heat supply systems for both residential buildings and public buildings. This will significantly align the schedule of electricity consumption during the day and reduce the consumption of hydrocarbon fuels.
Downloads
References
Enerhetychna stratehiya ukrainy na period do 2035 roku «Bezpeka, enerhoefektyvnist, konkurentospromozhnist» (2015). Verkhovna Rada Ukrainy. Kyiv, 66.
Bozhko, V. M., Gromadskiy, Yu. S., Krukovskiy, P. G., Timchenko, N. P., Rozinskiy, D. I. (2001). Sovremennoe sostoyanie i perspektivy razvitiya elektrootopleniya v Ukraine. Promislova elektroenergetika ta elektrotekhnіka, 3, 18–21.
Himenko, A. V., Tarasova, V. A. (2013). Issledovanie rezhimov raboty elektricheskogo teplovogo akkumulyatora. Intehrovani tekhnolohiyi ta enerhozberezhennia, 2, 136–139.
Nedbaylo, A. N. (2004). Eksperimental'naya ustanovka po issledovaniyu gruntovogo akkumulyatora teploty. Promyshlennaya energetika, 26 (6), 182–185.
Sotnikova, O. A., Turbin, B. C., Grigor'ev, V. A. (2003). Akkumulyatory teploty teplogeneriruyuschih ustanovok sistem teplosnabzheniya. Zhurnal «AVOK», 5, 40–44.
Mazurenko, A. S., Klimchuk, A. A., Yurkovskiy, S. Yu., Omeko, R. V. (2015). Development of the scheme of combined heating system using seasonal storage of heat from solar plants. Eastern-European Journal of Enterprise Technologies, 1 (8 (73)), 15–20. doi: https://doi.org/10.15587/1729-4061.2015.36902
Mazurenko, A., Denysova, A., Balasanian, G., Klymchuk, O., Tsurkan, A. (2018). Construction of methods to improve operational efficiency of an intermittent heat supply system by determining conditions to employ a standby heating mode. Eastern-European Journal of Enterprise Technologies, 6 (8 (96)), 25–31. doi: https://doi.org/10.15587/1729-4061.2018.148049
Macevityy, Yu. M., Ganzha, N. G., Himenko, A. V. (2011). Ocenka energeticheskoy effektivnosti sistem teploakkumulyacionnogo otopleniya administrativnyh zdaniy. Energosberezhenie, energetika, audit, 10, 9–16.
Mazurenko, A., Denysova, A., Balasanian, G., Klimchuk, A., Borysenko, K. (2017). Improving the operation modes efficiency in heat pump systems of hot water supply with the two-stage heat accumulation. Eastern-European Journal of Enterprise Technologies, 1 (8 (85)), 27–33. doi: https://doi.org/10.15587/1729-4061.2017.92495
Patankar, S. V.; Yan'kov, G. G. (Ed.) (2003). Chislennoe reshenie zadach teploprovodnosti i konvektivnogo teploobmena pri techenii v kanalah. Moscow: Izdatel'stvo MEI, 312.
Еvtyukova, I. P., Kacevich, L. S., Nekrasova, N. M., Svenchanskiy, A. D.; Svenchanskiy, A. D. (Ed.) (1982). Elektrotekhnologicheskie promyshlennye ustanovki. Moscow: Energoizdat, 400.
Еgorov, V. I. (2006). Tochnye metody resheniya zadach teploprovodnosti. Sankt-Peterburg: SPb GU ITMO, 48.
Gallager, R. (1984). Metod konechnyh elementov. Osnovy. Moscow: Mir, 428.
Wu, C., Nikulshin, V. (2000). Method of thermoeconomical optimization of energy intensive systems with linear structure on graphs. International Journal of Energy Research, 24 (7), 615–623. doi: https://doi.org/10.1002/1099-114x(20000610)24:7<615::aid-er608>3.0.co;2-p
Ganzha, A. M., Zaiets, O. M., Marchenko, N. A., Kollarov, O. Ju., Njemcev, E. M. (2018). Methodology of calculation of multiplex heat exchang apparatus with cross flow and mixing in heat carriers. Journal of new technologies in environmental science, 2 (1), 26–35.
Copyright (c) 2019 Oleksandr Klymchuk, Alla Denysova, Aleksandr Shramenko, Krystyna Borysenko, Lidiia Ivanova

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.