HIERARCHICAL CLUSTERING OF SEISMIC ACTIVITY LOCAL TERRITORIES GLOBE

  • Vadym Tiutiunyk National University of Civil Protection of Ukraine, Ukraine
  • Vladimir Kalugin National University of Civil Protection of Ukraine, Ukraine
  • Olha Pysklakova National University of Civil Protection of Ukraine, Ukraine
  • Olexandr Yaschenko National University of Civil Protection of Ukraine, Ukraine
  • Tural Agazade National University of Civil Protection of Ukraine, Ukraine
Keywords: emergency situation, seismic activity, seismic danger, monitoring of emergency situations, cluster analysis

Abstract

In article, the interrelation between energy parameters of Globe moving in a system Sun-Earth-Moon has been established. It includes features of a seasonal energy condition of an internal core of Earth and the key energy parameters of tectonic activity of seismically dangerous local territories of the planet. These parameters have been systematized by means of a clustering method hierarchical. The mechanism of energy influence of core Earth fluctuations on variations of axial rotation speed of the Globe and level of seismic activity has been grounded. The phenomenon of a periodic oscillation of planet condition seismic and effect of asymmetric distribution of the emergency situations (ES) of tectonic origin on the Earth's surface has been established. For the first time, ranging of the seismically fissile local territories of the Globe in the parameters determining the level of seismic activity and ranges of magnitudes was carried out. Based on these results the effect of division of the seismically fissile local territories into three main clusters that characterized by rather high, average and low degrees of seismic activity was established. Join of the ranged seismically fissile local territories of the Globe permit to establish zones with various degree of seismic activity along the section of various geophysical plates.

The results received in article are a basis for further carrying out complex assessment of interrelations between key parameters of moving Globe in a system Sun-Earth-Moon and key parameters of tectonic danger of the seismically fissile local territories of Earth. It is base for further increase in effectiveness of monitoring of origin tectonic emergency by development of neural network prognostic models.

Downloads

Download data is not yet available.

Author Biographies

Vadym Tiutiunyk, National University of Civil Protection of Ukraine

Department of Management and Organization of Civil Protection

Vladimir Kalugin, National University of Civil Protection of Ukraine

Department of Special Chemistry and Chemical Engineering

Olha Pysklakova, National University of Civil Protection of Ukraine

Department of Management and Organization of Civil Protection

Olexandr Yaschenko, National University of Civil Protection of Ukraine

Department of Management and Organization of Civil Protection

Tural Agazade, National University of Civil Protection of Ukraine

Department of Management and Organization of Civil Protection

References

Chernogor, L. F. (2012). Fizika i ekologiya katastrof. Kharkiv: Har'kovskiy natsional'nyy universitet imeni V. N. Karazina, 556.

Tiutiunyk, V. V., Chornohor, L. F., Kaluhin, V. D. (2011). Systemnyi pidkhid do otsinky nebezpeky zhyttiediyalnosti pry terytorialno chasovomu rozpodili enerhiyi dzherel nadzvychainykh sytuatsiyi. Problemy nadzvychainykh sytuatsiy, 14, 171–194.

First report of the Chairman of the International Committee GEOCHANGE on issues of Global Changes of the Geological Environment 30.06.2010. Available at: http://geochange-report.org/index.php?option=com_content&view=category&id=35&Itemid=84

Barishpolets, V. A. (2010). System analysis of taking place in world catastrophes. Radioelektronika. Nanosistemy. Informatsionnye tekhnologii, 2 (1-2), 162–176.

Natsionalna dopovid pro stan tekhnohennoi ta pryrodnoi bezpeky v Ukraini. Available at: https://undicz.dsns.gov.ua/ua/Nacionalna-dopovid-pro-stan-tehnogennoyi-ta-prirodnoyi-bezpeki-v-Ukrayini.html

Kodeks tsyvilnoho zakhystu Ukrainy vid 2 zhovtnia 2012 roku No. 5403-VI (2012). Holos Ukrainy, 220 (5470), 4–20.

Postanova Kabinetu Ministriv Ukrainy vid 9 sichnia 2014 roku No. 11 «Pro zatverdzhennia Polozhennia pro Yedynu derzhavnu systemu tsyvilnoho zakhystu». Verkhovna Rada of Ukraine. Available at: http://zakon5.rada.gov.ua/laws/show/11-2014- %D0 %BF

Kalugin, V. D., Tiutiunik, V. V., Chernogor, L. F., Shevchenko, R. I. (2013). Development of scientific and technical basis for establishment of monitoring, prevention and liquidation of emergency situations of natural and man-made nature, and also ensuring of environmental of ecological security. Systemy obrobky informatsiyi, 9 (116), 204–216.

Andronov, V. A., Diviziniuk, M. M., Kaluhin, V. D., Tiutiunyk, V. V. (2016). Naukovo-konstruktorski osnovy stvorennia kompleksnoi systemy monitorynhu nadzvychainykh sytuatsiy v Ukraini. Kharkiv: Natsionalnyi universytet tsyvilnoho zakhystu Ukrainy, 319.

Tiutiunyk, V. V., Chernogor, L. F., Kalugin, V. D., Agazade, T. (2017). Assessment of influence power effects in system the Sun-Earth-Moon on the level of seismic activities the territory of the globe. Systemy upravlinnia, navihatsiyi ta zviazku, 6 (46), 238–246.

Tiutiunyk, V., Chornohor, L., Kaluhin, V., Ahazade, T. (2017). Assessment of dynamic and power effects on the Earth and their influences on ratios between seismic activity levels of globe hemispheres. Naukovyi visnyk: Tsyvilnyi zakhyst ta pozhezhna bezpeka, 2 (4), 101–117.

Zharov, V. E., Konov, A. S., Smirnov, V. B. (1991). Variatsii parametrov vrascheniya Zemli i ih svyaz' s sil'neyshimi zemletryaseniyami mira. Astronomicheskiy zhurnal, 68 (1), 187–196.

Gor'kaviy, N. N., Levitskiy, L. S., Taydakova, T. A., Trapeznikov, Yu. A., Fridman, A. M. (1994). O korrelyatsii grafikov uglovoy skorosti vrascheniya Zemli i modulya ee vremennoy proizvodnoy s chastotoy zemletryaseniy v zavisimosti ot ih magnitudy. Fizika Zemli, 10, 33–38.

Sidorenkov, N. S. (2004). Nestabil'nost' vrascheniya Zemli. Vestnik RAN, 74 (8), 701–715.

Sidorin, A. Ya. (2004). Vliyanie Solntsa na seysmichnost' i seysmicheskiy shum. Seysmicheskie pribory, 40, 71–80.

Levin, B. V., Sasorova, E. V., Domanskiy, A. V. (2013). Features of «critical latitudes», variations of rotation and seismicity of the Earth. Vestnik Dal'nevostochnogo otdeleniya Rossiyskoy akademii nauk, 3, 3–8.

Zharov, V. E. (1996). Connection of the earth's rotation with the atmospheric angular momentum and the strongest earthquakes. Astronomical & Astrophysical Transactions, 9 (4), 317–327. doi: https://doi.org/10.1080/10556799608208230

Wiemer, S., Wyss, M. (2002). Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Advances in Geophysics. Vol. 45. Elsevier, 259–302. doi: https://doi.org/10.1016/s0065-2687(02)80007-3

Atef, A. H., Liu, K. H., Gao, S. S. (2009). Apparent Weekly and Daily Earthquake Periodicities in the Western United States. Bulletin of the Seismological Society of America, 99 (4), 2273–2279. doi: https://doi.org/10.1785/0120080217

Sidorenkov, N. S. (2002). Fizika nestabil'nostey vrascheniya Zemli. Moscow: Nauka, Fizmatlit, 384.

Klimenko, A. V. (2005). Global'nye svoystva seysmicheskoy aktivnosti Zemli i ih svyaz' s ee vrascheniem. Moscow: Moskovskiy gosudarstvennyy oblastnoy universitet, 87.

Malyshkov, Yu. P., Malyshkov, S. Yu. (2009). Periodicheskie variatsii geofizicheskih poley i seysmichnosti, ih vozmozhnaya svyaz' s dvizheniem yadra Zemli. Geologiya i geofizika, 50 (2), 152–172.

Malyshkov, Yu. P., Malyshkov, S. Yu., Shtalin, S. G. et. al. (2009). Pat. No. 2352961S2 RF. Sposob opredeleniya prostranstvennogo polozheniya i parametrov dvizheniya vnutrennego yadra Zemli. MPK G01V3/00. 20.04.2009.

Romashov, A. N., Tsygankov, S. S. (1996). V poiskah obobschayuschey geotektonicheskoy kontseptsii. Geotektonika, 4, 3–12.

Fridman, A. M., Polyachenko, E. V., Nasyrkanov, N. R. (2010). On some correlations in seismodynamics and on two components of Earth's seismic activity. Uspekhi Fizicheskih Nauk, 180 (3), 303–312. doi: https://doi.org/10.3367/ufnr.0180.201003f.0303

Rays, Dzh. (1982). Mekhanika ochaga zemletryaseniya. Moscow: Mir, 217.

Kasahara, K. (1985). Mekhanika zemletryaseniy. Moscow: Mir, 264.

Truhin, V. I., Pokazeev, K. V., Kunitsyn, V. E. (2005). Obschaya i ekologicheskaya geofizika. Moscow: FIZMATLIT, 576.

Gufel'd, I. L. (2007). Seysmicheskiy protsess. Fiziko-himicheskie aspekty. Moscow, 160.

Berezniakov, A. I., Niemets, K. A. (2010). Fizyka Zemli. Kharkiv: Kharkivskyi natsionalnyi universytet imeni V. N. Karazina, 268.

Savarenskiy, E. F. (1972). Seysmicheskie volny. Moscow: Nedra, 296.

Malyshkov, Yu. P., Dzhumabaev, K. B., Malyshkov, S. Yu. et. al. (2002). Pat. No. 2238575 RF. Sposob prognoza zemletryaseniy. Institut monitoringa klimaticheskih i ekologicheskih sistem. No. 2002115880/28; declareted: 13.06.2002; published: 20.10.2004.

Pshennikov, K. V. (1965). Mekhanizm vozniknoveniya aftershokov i neuprugie svoystva zemnoy kory. Moscow: Nauka, 87.

Guglielmi, A. V. (2015). Foreshocks and aftershocks of strong earthquakes in the light of catastrophe theory. Uspekhi Fizicheskih Nauk, 185 (4), 415–429. doi: https://doi.org/10.3367/ufnr.0185.201504f.0415

Levin, B. V., Rodkin, M. V., Tihonov, I. N. (2011). Velikoe Yaponskoe zemletryasenie. Priroda, 10, 14–22.

Sadovskiy, M. A. (Ed.) (1982). Elektromagnitnye predvestniki zemletryaseniy. Moscow: Nauka, 69.

Remizov, L. T. (1991). Registratsiya izmeneniy estestvennogo elektromagnitnogo polya v periody vremeni, predshestvuyuschie zemletryaseniyam. Radiotekhnika i elektronika, 36 (6), 1041–1080.

Tertyshnikov, A. V. (2012). Predictors of the strong earthquakes in the ozone layer. Heliogeophysical Research, 2, 54–59.

Belyakov, A. S., Lavrov, V. S., Nikolaev, A. V., Hudzinskiy, L. L. (1999). Podzemnyy fonoviy zvuk i ego svyaz' s prilivnymi deformatsiyami. Fizika Zemli, 12, 39–46.

Afraimovich, E. L., Perevalova, N. P., Plotnikov, A. V., Uralov, A. M. (2001). The shock-acoustic waves generated by earthquakes. Annales Geophysicae, 19 (4), 395–409. doi: https://doi.org/10.5194/angeo-19-395-2001

Garcia, R., Crespon, F., Ducic, V., Lognonné, P. (2005). Three-dimensional ionospheric tomography of post-seismic perturbations produced by the Denali earthquake from GPS data. Geophysical Journal International, 163 (3), 1049–1064. doi: https://doi.org/10.1111/j.1365-246x.2005.02775.x

Heki, K., Ping, J. (2005). Directivity and apparent velocity of the coseismic ionospheric disturbances observed with a dense GPS array. Earth and Planetary Science Letters, 236 (3-4), 845–855. doi: https://doi.org/10.1016/j.epsl.2005.06.010

Kim, Dzh. O., Myuller, Ch. U., Klekka, U. R. et. al.; Enyukova, I. S. (Ed.) (1989). Faktorniy, diskriminantniy i klasterniy analiz. Moscow: Finansy i statistika, 215.

Halafyan, A. A. (2007). STATISTICA 6. Statisticheskiy analiz dannyh. Moscow: OOO «Binom-Press», 512.

Serapinas, B. B. (2005). Matematicheskaya kartografiya. Moscow: Izdatel'skiy tsentr «Akademiya», 336.


👁 526
⬇ 283
Published
2019-07-31
How to Cite
Tiutiunyk, V., Kalugin, V., Pysklakova, O., Yaschenko, O., & Agazade, T. (2019). HIERARCHICAL CLUSTERING OF SEISMIC ACTIVITY LOCAL TERRITORIES GLOBE. EUREKA: Physics and Engineering, (4), 41-53. https://doi.org/10.21303/2461-4262.2019.00937
Section
Earth and Planetary Sciences