THE RS1801282 PPARG POLYMORPHISM DEPENDENT METABOLIC EFFECTS OF PIOGLITAZONE IN PATIENTS WITH OBESITY AND CONCOMITANT NAFLD

Keywords: controlled attenuation parameter (CAP), steatometry, HOMA-IR, oral glucose tolerance test (OGTT), serum uric acid

Abstract

The aim: to investigate the metabolic effects of different treatment options in patients with obesity and concomitant non-alcoholic fatty liver disease (NAFLD) based on the presence of CG and GG genotypes PPARG rs1801282 (Pro12Ala) polymorphism in Ukrainians.

Materials and methods: 123 patients with NAFLD in combination with obesity 1, 2, 3 classes were included in the motivational weight loss program (5 visits, 3 months). The case group was treated with pioglitazone 15 mg / day, while the control group received only a program. Ultrasound steatometry, anthropometric and laboratory tests before and after treatment, genetic testing rs1801282 polymorphism in PPARG gene were performed.

Results: the carriers of CG and GG genotypes PPARG rs1801282 polymorphism had less high stimulated insulin levels compared with groups of different genotypes (p<0.001). It was found pioglitazone effectiveness with significant difference in dynamics of CAP reduction (p<0.001) regardless of polymorphism. Dynamics of BMI decrease was the lowest in control group CC carries – –2.81 (–3.23; –2.39) kg (p<0.001) compared among other groups. Subjects from pioglitazone group with rs1801282 polymorphism carrying of CG and GG genotypes had significant differences in dynamics of fasting С-peptide decrease, serum uric acid reduction – –1.31 (–1.50; –1.13) µg/L and -165.3 (–182.80; –147.80) µmol/L (p<0.001) respectively compared among other groups.

Conclusions: Better reduction of metabolic parameters during pioglitazone treatment of patients with obesity and concomitant NAFLD appears to be associated with carrying of CG and GG genotypes PPARG rs1801282 polymorphism.

Downloads

Download data is not yet available.

Author Biographies

Vadym Shypulin, Bogomolets National Medical University

Department of Internal Medicine No. 1

Nikolai Rudenko, Bogomolets National Medical University

Department of Internal Medicine No. 1

Oleksandr Martynchuk, Bogomolets National Medical University

Department of Internal Medicine No. 1

Aleksandr Koliada, Laboratory Diagen

Genetics Department

Vitaly Guryanov, Bogomolets National Medical University

Department of Health Management

Nataliia Melnyk, Bogomolets National Medical University

Department of Internal Medicine No. 1

References

Kovalic, A. J., Banerjee, P., Tran, Q. T., Singal, A. K., Satapathy, S. K. (2018). Genetic and Epigenetic Culprits in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Journal of Clinical and Experimental Hepatology, 8 (4), 390–402. doi: http://doi.org/10.1016/j.jceh.2018.04.001

Cholankeril, R., Patel, V., Perumpail, B., Yoo, E., Iqbal, U., Sallam, S. et. al. (2018). Anti-Diabetic Medications for the Pharmacologic Management of NAFLD. Diseases, 6 (4), 93. doi: http://doi.org/10.3390/diseases6040093

Wang, N., Kong, R., Luo, H., Xu, X., Lu, J. (2017). Peroxisome Proliferator-Activated Receptors Associated with Nonalcoholic Fatty Liver Disease. PPAR Research, 2017, 1–8. doi: http://doi.org/10.1155/2017/6561701

Lee, Y. K., Park, J. E., Lee, M., Hardwick, J. P. (2018). Hepatic lipid homeostasis by peroxisome proliferator-activated receptor gamma 2. Liver Research, 2 (4), 209–215. doi: http://doi.org/10.1016/j.livres.2018.12.001

Wang, Y., Nakajima, T., Gonzalez, F. J., Tanaka, N. (2020). PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific PPAR-Null Mice. International Journal of Molecular Sciences, 21 (6), 2061. doi: http://doi.org/10.3390/ijms21062061

EASL–EASD–EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. (2016). Journal of Hepatology, 64 (6), 1388–1402. doi: http://doi.org/10.1016/j.jhep.2015.11.004

Wolf Greenstein, A., Majumdar, N., Yang, P., Subbaiah, P. V., Kineman, R. D., Cordoba-Chacon, J. (2017). Hepatocyte-specific, PPARγ-regulated mechanisms to promote steatosis in adult mice. Journal of Endocrinology, 232 (1), 107–121. doi: http://doi.org/10.1530/joe-16-0447

Hall, K. D., Ayuketah, A., Brychta, R., Cai, H., Cassimatis, T., Chen, K. Y. et. al. (2019). Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metabolism, 30 (1), 67–77.e3. doi: http://doi.org/10.1016/j.cmet.2019.05.008

Bugianesi, E., Gastaldelli, A., Vanni, E., Gambino, R., Cassader, M., Baldi, S. et. al. (2005). Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia, 48 (4), 634–642. doi: http://doi.org/10.1007/s00125-005-1682-x

Sanchez-Lozada, L. G., Andres-Hernando, A., Garcia-Arroyo, F. E., Cicerchi, C., Li, N., Kuwabara, M. et. al. (2019). Uric acid activates aldose reductase and the polyol pathway for endogenous fructose and fat production causing development of fatty liver in rats. Journal of Biological Chemistry, 294 (11), 4272–4281. doi: http://doi.org/10.1074/jbc.ra118.006158

Barros, R. K., Cotrim, H. P., Daltro, C. H., Oliveira, Y. A. (2017). Hyperferritinemia in patients with nonalcoholic fatty liver disease. Revista Da Associação Médica Brasileira, 63 (3), 284–289. doi: http://doi.org/10.1590/1806-9282.63.03.284

Marunchyn, N., Dynnyk, B., Kobyliak, N., Fedusenko, A., Barannyk, E. (2017). Attenuation coefficient measurement as novel noninvasive ultrasound method for diagnosis ofhepatic steatosis. Endocrinology, 22 (2), 115–120. Available at: https://endokrynologia.com.ua/index.php/journal/article/view/67/59.

Pu, K., Wang, Y., Bai, S., Wei, H., Zhou, Y., Fan, J., Qiao, L. (2019). Diagnostic accuracy of controlled attenuation parameter (CAP) as a non-invasive test for steatosis in suspected non-alcoholic fatty liver disease: a systematic review and meta-analysis. BMC Gastroenterology, 19 (1). doi: http://doi.org/10.1186/s12876-019-0961-9

World Health Organization (2006). Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF Consultation. Available at: http://www.who.int/diabetes/publications/Definition %20and %20diagnosis %20of %20diabetes_new.pdf Last accessed: 09.04.2016

Bondar, R. J. L., Mead, D. C. (1974). Evaluation of Glucose-6-Phosphate Dehydrogenase from Leuconostoc mesenteroides in the Hexokinase Method for Determining Glucose in Serum. Clinical Chemistry, 20 (5), 586–590. doi: http://doi.org/10.1093/clinchem/20.5.586

Albano, J. D. M., Ekins, R. P., Maritz, G., Turner, R. C. (1972). A sensitive, precise radioimmunoassay of serum insulin relying on charcoal separation of bound and free hormone moieties. Acta Endocrinologica, 70 (3), 487–509. doi: http://doi.org/10.1530/acta.0.0700487

Recommendations for managing type 2 diabetes in primary care (2017). International Diabetes Federation. Available at: www.idf.org/managing-type2-diabetes

Kanda, Y. (2012). Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplantation, 48 (3), 452–458. doi: http://doi.org/10.1038/bmt.2012.244

Leighton, E., Sainsbury, C. A., Jones, G. C. (2017). A Practical Review of C-Peptide Testing in Diabetes. Diabetes Therapy, 8 (3), 475–487. doi: http://doi.org/10.1007/s13300-017-0265-4

Takahashi, K., Nakamura, H., Sato, H., Matsuda, H., Takada, K., Tsuji, T. (2018). Four Plasma Glucose and Insulin Responses to a 75 g OGTT in Healthy Young Japanese Women. Journal of Diabetes Research, 2018, 1–7. doi: http://doi.org/10.1155/2018/5742497

Jones, A. G., Hattersley, A. T. (2013). The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabetic Medicine, 30 (7), 803–817. doi: http://doi.org/10.1111/dme.12159

Domenici, F. A., Brochado, M. J. F., Martinelli, A. de L. C., Zucoloto, S., da Cunha, S. F. de C., Vannucchi, H. (2013). Peroxisome proliferator-activated receptors alpha and gamma2 polymorphisms in nonalcoholic fatty liver disease: A study in Brazilian patients. Gene, 529 (2), 326–331. doi: http://doi.org/10.1016/j.gene.2013.06.091

Lombardi, R., Pisano, G., Fargion, S. (2016). Role of Serum Uric Acid and Ferritin in the Development and Progression of NAFLD. International Journal of Molecular Sciences, 17 (4), 548. doi: http://doi.org/10.3390/ijms17040548

Black, M. H., Wu, J., Takayanagi, M., Wang, N., Taylor, K. D., Haritunians, T. et. al. (2015). Variation inPPARGIs Associated With Longitudinal Change in Insulin Resistance in Mexican Americans at Risk for Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 100 (3), 1187–1195. doi: http://doi.org/10.1210/jc.2014-3246


👁 216
⬇ 191
Published
2020-09-22
How to Cite
Shypulin, V., Rudenko, N., Martynchuk, O., Koliada, A., Guryanov, V., & Melnyk, N. (2020). THE RS1801282 PPARG POLYMORPHISM DEPENDENT METABOLIC EFFECTS OF PIOGLITAZONE IN PATIENTS WITH OBESITY AND CONCOMITANT NAFLD. EUREKA: Health Sciences, (6), 15-23. https://doi.org/10.21303/2504-5679.2020.001426
Section
Medicine and Dentistry