DETERMINATION OF MOLECULAR GENETIC MARKERS IN PROGNOSIS OF THE EFFECTIVENESS OF TREATMENT OF MALIGNANT INTRACEREBRAL BRAIN TUMORS

  • Oleksandr Glavatskyi State Institution "Institute of Neurosurgery named after acad. A. P. Romodanov of NAMS of Ukraine", Ukraine
  • Irina Vasileva State Institution "Institute of Neurosurgery named after acad. A. P. Romodanov of NAMS of Ukraine", Ukraine
  • Olena Galanta State Institution "Institute of Neurosurgery named after acad. A. P. Romodanov of NAMS of Ukraine", Ukraine
  • Hennadii Khmelnytskyi State Institution "Institute of Neurosurgery named after acad. A. P. Romodanov of NAMS of Ukraine", Ukraine
  • Irina Shuba State Institution "Institute of Neurosurgery named after acad. A. P. Romodanov of NAMS of Ukraine", Ukraine
  • Konstantin Kardash Odessa Regional Hospital, Ukraine
  • Oksana Zemskova State Institution "Institute of Neurosurgery named after acad. A. P. Romodanov of NAMS of Ukraine", Ukraine
Keywords: malignant brain tumors, glioblastoma, MGMT gene, PTEN gene, EGFR, personalized medicine

Abstract

Intracerebral malignant brain tumors remain one of the most complex problems of neuro-oncology. Today, promising results of the use of targeted drugs have been received, which determine the important diagnostic and predictive value of molecular genetic markers of glial and metastatic brain tumors.

Aim: The study of the prevalence of MGMT (O6-methylguanine-DNA methyltransferase) and PTEN (phosphatase and tensin homologue deleted on chromosome 10) gene expression by real time polymerase chain reaction in tumor tissue of gliomas and brain metastases.

Materials and methods: From thirty patients were received tumor material (29 cases of glioma III-IV degree of anaplasia and one case of metastatic brain lesion of adenocarcinoma). The normalized expression of MGMT and PTEN genes was determined by real-time polymerase chain reaction.

Results: In all 30 (100 %) patients with tumor fragments, we determined normalized expression of MGMT and PTEN genes. In most cases, 53 % of the observations (16 out of 30 patients) showed a low normalized expression of MGMT gene (<40 c. u.) and a low normalized PTEN expression rate of 73 % (22 out of 30 patients) (<40 c. u.). The average expression level of the MGMT gene in the range from 40 to 100 c. u. (6/20 % of patients) was considered prognostic favourable for the response to temozolomide chemotherapy.

Conclusions: The study of MGMT gene expression, a chemotherapy marker for temozolomide, indicates a trend toward correlation between expression levels and therapeutic efficacy. The study of the expression of the PTEN gene, the blocker of the PI3K / AKT signal pathway, indicates a different degree of expression of this enzyme in the tumour samples studied. The predictive value of the indicator for target therapy is appropriate in comparison with the EGFR mutation. Further profound analysis of the results is required with increasing number of sampling and observation period.

Downloads

Download data is not yet available.

Author Biographies

Oleksandr Glavatskyi, State Institution "Institute of Neurosurgery named after acad. A. P. Romodanov of NAMS of Ukraine"

Department of Adjuvant Treatment of CNS Tumors

Irina Vasileva, State Institution "Institute of Neurosurgery named after acad. A. P. Romodanov of NAMS of Ukraine"

Department of Neurobiochemistry

Olena Galanta, State Institution "Institute of Neurosurgery named after acad. A. P. Romodanov of NAMS of Ukraine"

Department of Neurobiochemistry

Hennadii Khmelnytskyi, State Institution "Institute of Neurosurgery named after acad. A. P. Romodanov of NAMS of Ukraine"

Department of Intracerebral Tumors

Irina Shuba, State Institution "Institute of Neurosurgery named after acad. A. P. Romodanov of NAMS of Ukraine"

Department of Neurobiochemistry

Konstantin Kardash, Odessa Regional Hospital

Department of Neurosurgery

Oksana Zemskova, State Institution "Institute of Neurosurgery named after acad. A. P. Romodanov of NAMS of Ukraine"

Department of Radioneurosurgery

References

Nørøxe, D. S., Poulsen, H. S., Lassen, U. (2016). Hallmarks of glioblastoma: a systematic review. ESMO Open, 1 (6), e000144. doi: http://doi.org/10.1136/esmoopen-2016-000144

Wick, W., Osswald, M., Wick, A., Winkler, F. (2018). Treatment of glioblastoma in adults. Therapeutic Advances in Neurological Disorders, 11. doi: http://doi.org/10.1177/1756286418790452

Walker, M. D., Alexander, E., Hunt, W. E., MacCarty, C. S., Mahaley, M. S., Mealey, J. et. al. (1978). Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. Journal of Neurosurgery, 49 (3), 333–343. doi: http://doi.org/10.3171/jns.1978.49.3.0333

Walker, M. D., Green, S. B., Byar, D. P., Alexander, E., Batzdorf, U., Brooks, W. H. et. al. (1980). Randomized Comparisons of Radiotherapy and Nitrosoureas for the Treatment of Malignant Glioma after Surgery. New England Journal of Medicine, 303 (23), 1323–1329. doi: http://doi.org/10.1056/nejm198012043032303

Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J. B. et. al. (2005). Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine, 352 (10), 987–996. doi: http://doi.org/10.1056/nejmoa043330

Holland, E., Ene, C. (2015). Personalized Medicine for Gliomas. Surgical Neurology International, 6 (2), 89–95. doi: http://doi.org/10.4103/2152-7806.151351

Jiapaer, S., Furuta, T., Tanaka, S., Kitabayashi, T., Nakada, M. (2018). Potential Strategies Overcoming the Temozolomide Resistance for Glioblastoma. Neurologia Medico-Chirurgica, 58 (10), 405–421. doi: http://doi.org/10.2176/nmc.ra.2018-0141

Lee, S. Y. (2016). Temozolomide resistance in glioblastoma multiforme. Genes & Diseases, 3 (3), 198–210. doi: http://doi.org/10.1016/j.gendis.2016.04.007

Wang, J., Hu, G., Quan, X. (2019). Analysis of the factors affecting the prognosis of glioma patients. Open Medicine, 14 (1), 331–335. doi: http://doi.org/10.1515/med-2019-0031

Hartmann, C., Hentschel, B., Simon, M., Westphal, M., Schackert, G. et. al. (2013). Long-Term Survival in Primary Glioblastoma With Versus Without Isocitrate Dehydrogenase Mutations. Clinical Cancer Research, 19 (18), 5146–5157. doi: http://doi.org/10.1158/1078-0432.ccr-13-0017

Reifenberger, G., Weber, R. G., Riehmer, V., Kaulich, K., Willscher, E. et. al. (2014). Molecular characterization of long-term survivors of glioblastoma using genome- and transcriptome-wide profiling. International Journal of Cancer, 135 (8), 1822–1831. doi: http://doi.org/10.1002/ijc.28836

Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K. et. al. (2016). The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica, 131 (6), 803–820. doi: http://doi.org/10.1007/s00401-016-1545-1

Medina, T. M., Lewis, K. D. (2016). The evolution of combined molecular targeted therapies to advance the therapeutic efficacy in melanoma: a highlight of vemurafenib and cobimetinib. OncoTargets and Therapy, 9, 3739–3752. doi: http://doi.org/10.2147/ott.s86774

Xiao, W.-Z., Han, D.-H., Wang, F., Wang, Y.-Q., Zhu, Y.-H., Wu, Y.-F. et. al. (2014). Relationships between PTEN gene mutations and prognosis in glioma: a meta-analysis. Tumor Biology, 35 (7), 6687–6693. doi: http://doi.org/10.1007/s13277-014-1885-1

Brandes, A. A., Franceschi, E., Paccapelo, A., Tallini, G., De Biase, D., Ghimenton, C. et. al. (2017). Role of MGMT Methylation Status at Time of Diagnosis and Recurrence for Patients with Glioblastoma: Clinical Implications. The Oncologist, 22 (4), 432–437. doi: http://doi.org/10.1634/theoncologist.2016-0254

Nguyen, H., Shabani, S., Awad, A., Kaushal, M., Doan, N. (2018). Molecular Markers of Therapy-Resistant Glioblastoma and Potential Strategy to Combat Resistance. International Journal of Molecular Sciences, 19 (6), 1765. doi: http://doi.org/10.3390/ijms19061765

Kwatra, M. (2017). A Rational Approach to Target the Epidermal Growth Factor Receptor in Glioblastoma. Current Cancer Drug Targets, 17 (3), 290–296. doi: http://doi.org/10.2174/1568009616666161227091522

Liu, F., Mischel, P. S. (2017). Targeting epidermal growth factor receptor co-dependent signaling pathways in glioblastoma. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 10 (1), e1398. doi: http://doi.org/10.1002/wsbm.1398

Eskilsson, E., Røsland, G. V., Solecki, G., Wang, Q., Harter, P. N., Graziani, G. et. al. (2017). EGFR heterogeneity and implications for therapeutic intervention in glioblastoma. Neuro-Oncology, 20 (6), 743–752. doi: http://doi.org/10.1093/neuonc/nox191

Elsamadicy, A. A., Chongsathidkiet, P., Desai, R., Woroniecka, K., Farber, S. H., Fecci, P. E., Sampson, J. H. (2017). Prospect of rindopepimut in the treatment of glioblastoma. Expert Opinion on Biological Therapy, 17 (4), 507–513. doi: http://doi.org/10.1080/14712598.2017.1299705

Benitez, J. A., Ma, J., D’Antonio, M., Boyer, A., Camargo, M. F., Zanca, C. et. al. (2017). PTEN regulates glioblastoma oncogenesis through chromatin-associated complexes of DAXX and histone H3.3. Nature Communications, 8 (1). doi: http://doi.org/10.1038/ncomms15223

Kang, Y.-J., Balter, B., Csizmadia, E., Haas, B., Sharma, H., Bronson, R., Yan, C. T. (2017). Erratum: Corrigendum: Contribution of classical end-joining to PTEN inactivation in p53-mediated glioblastoma formation and drug-resistant survival. Nature Communications, 8 (1). doi: http://doi.org/10.1038/ncomms15795


👁 328
⬇ 232
Published
2019-07-31
How to Cite
Glavatskyi, O., Vasileva, I., Galanta, O., Khmelnytskyi, H., Shuba, I., Kardash, K., & Zemskova, O. (2019). DETERMINATION OF MOLECULAR GENETIC MARKERS IN PROGNOSIS OF THE EFFECTIVENESS OF TREATMENT OF MALIGNANT INTRACEREBRAL BRAIN TUMORS. EUREKA: Health Sciences, (4), 25-34. https://doi.org/10.21303/2504-5679.2019.00949
Section
Medicine and Dentistry