Polarization of macrophages of mice under the influence of lectin from Bacillus subtilis IMV B-7724

  • Alina Chumak R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine
  • Valeriia Shcherbina R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine
  • Natalia Fedosova R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine
  • Vasyl' Chekhun R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine
Keywords: macrophages, functional state, M1 and M2 polarization, molecular mechanisms, transcription factors

Abstract

Macrophages (Mph) are highly plastic cells that are able to change their functional activity (polarization) and perform their functions in different physiological and pathological processes (including cancer). Changes in the functional activity of Mph can occur due to the action of a number of external stimuli (cytokines, colony-stimulating factors, products of microbial synthesis, etc.).

The aim of the research was to study the effect of lectin from B. subtilis IMV B-7724 on the state of macrophage polarization in intact mice of the Balb/c strain.

The cytotoxic effect of lectin from B. subtilis IMV B-7724 on the peritoneal Mph of intact Balb/c mice was evaluated in vitro; indices, characterizing the functional activity of Mph with M1 and M2 phenotypes and the levels of STAT-1 and STAT-6 mRNA expression, were determined.

We have shown that the effect of bacterial lectin on peritoneal Mph is concentration-dependent: ≥0.1 mg/ml is cytotoxic while 0.02 and 0.05 mg/ml is stimulating. At low concentrations of lectin there is observed a significant increase in the ratio of NO production to the arginase activity of Mph (NO/Arg), which is characteristic of Mph with the M1 phenotype. Changes in the expression of STAT transcription factors under the influence of the lectin were similar to the changes, found under the combined action of LPS and IFN-γ on Mph. The detected changes in the functional activity of peritoneal Mph of intact mice under the influence of low concentrations of the lectin may be due to the changes in the expression of transcription factors of the JAK-STAT signaling pathway. Understanding the mechanisms of action of lectin from B. subtilis IMV B-7724 on Mph will open new perspectives for their modulation/polarization

Downloads

Download data is not yet available.

Author Biographies

Alina Chumak, R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine

Department of Monitoring of Tumor Process and Therapy Design

Valeriia Shcherbina, R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine

Department of Oncohematology

Natalia Fedosova, R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine

Department of Monitoring of Tumor Process and Therapy Design

Vasyl' Chekhun, R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine

Department of Monitoring of Tumor Process and Therapy Design

References

Pan, C., Liu, H., Robins, E., Song, W., Liu, D., Li, Z., Zheng, L. (2020). Next-generation immuno-oncology agents: current momentum shifts in cancer immunotherapy. Journal of Hematology & Oncology, 13 (1). doi: https://doi.org/10.1186/s13045-020-00862-w
Potebnya, G. P., Lisovenko, G. S. (2010). Biotherapy of cancer: achievements and perspectives. Oncology, 12 (3), 237–243. Available at: http://dspace.nbuv.gov.ua/handle/123456789/19725
Ryspayeva, D. E., Ponomarova, O. V., Lisovska, N. Y. (2018). Immunotherapy is the first line of advanced lung cancer: what is new in 2018. Clinical oncology, 8 (2 (30)), 92–96. Available at: http://nbuv.gov.ua/UJRN/klinonk_2018_8_2_4
Mills, C. D., Lenz, L. L., Harris, R. A. (2016). A Breakthrough: Macrophage-Directed Cancer Immunotherapy. Cancer Research, 76 (3), 513–516. doi: https://doi.org/10.1158/0008-5472.can-15-1737
DeNardo, D. G., Ruffell, B. (2019). Macrophages as regulators of tumour immunity and immunotherapy. Nature Reviews Immunology, 19 (6), 369–382. doi: https://doi.org/10.1038/s41577-019-0127-6
Hörhold, F., Eisel, D., Oswald, M., Kolte, A., Röll, D., Osen, W. et. al. (2020). Reprogramming of macrophages employing gene regulatory and metabolic network models. PLOS Computational Biology, 16 (2), e1007657. doi: https://doi.org/10.1371/journal.pcbi.1007657
Huang, X., Li, Y., Fu, M., Xin, H.-B. (2018). Polarizing Macrophages In Vitro. Methods in Molecular Biology, 119–126. doi: https://doi.org/10.1007/978-1-4939-7837-3_12
Wang, N., Liang, H., Zen, K. (2014). Molecular mechanisms that influence the macrophage M1–M2 polarization balance. Frontiers in Immunology, 5. doi: https://doi.org/10.3389/fimmu.2014.00614
Piaszyk-Borychowska, A., Széles, L., Csermely, A., Chiang, H.-C., Wesoły, J., Lee, C.-K. et. al. (2019). Signal Integration of IFN-I and IFN-II With TLR4 Involves Sequential Recruitment of STAT1-Complexes and NFκB to Enhance Pro-inflammatory Transcription. Frontiers in Immunology, 10. doi: https://doi.org/10.3389/fimmu.2019.01253
Murray, P. J., Allen, J. E., Biswas, S. K., Fisher, E. A., Gilroy, D. W., Goerdt, S. et. al. (2014). Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 41 (1), 14–20. doi: https://doi.org/10.1016/j.immuni.2014.06.008
Bronte, V., Zanovello, P. (2005). Regulation of immune responses by L-arginine metabolism. Nature Reviews Immunology, 5 (8), 641–654. doi: https://doi.org/10.1038/nri1668
Karaman, О. М., Ivanchenko, A. V., Chekhun, V. F. (2019). Macrophages – a perspective target for antineoplastic immunotherapy. Experimental Oncology, 41 (4). doi: https://doi.org/10.32471/exp-oncology.2312-8852.vol-41-no-4.13698
Brüne, B., Courtial, N., Dehne, N., Syed, S. N., Weigert, A. (2017). Macrophage NOS2 in Tumor Leukocytes. Antioxidants & Redox Signaling, 26 (18), 1023–1043. doi: https://doi.org/10.1089/ars.2016.6811
Yau, T., Dan, X., Ng, C., Ng, T. (2015). Lectins with Potential for Anti-Cancer Therapy. Molecules, 20 (3), 3791–3810. doi: https://doi.org/10.3390/molecules20033791
Protivoopuholevye svoystva lektinov omely beloy. Available at: http://www.oncology.ru/specialist/journal_oncology/archive/0111/006/
Mazalovska, M., Kouokam, J. C. (2020). Plant-Derived Lectins as Potential Cancer Therapeutics and Diagnostic Tools. BioMed Research International, 2020, 1–13. doi: https://doi.org/10.1155/2020/1631394
Chekhun, V. F., Didenko, H. V., Cheremshenko, N. L., Kruts, O. O., Bazas, V. M., Voieikova, I. M. et. al. (2018). Pat. No. 131824 UA. Shtam bakteriy Bacillus subtilis IMB B-7724 - produtsent tsytotoksychnykh rechovyn z protypukhlynnoiu dieiu. No. u201809697; declareted: 27.09.2018; published: 25.01.2019, Bul. No. 2.
Pidhorskii, V. S., Kovalenko, E. O., Symonenko, I. O., Lakhtyn, V. M. (1988). Pat. No. 1791 UA. The method for the obtainmen of bacterial lectin, specific to sialic acids. No. 4471130/13; declareted: 01.08.1988; published: 23.01.1991, Bul. No. 3.
Kozhemiakin, Yu. M., Khromov, O. S., Filonenko, M. A., Saifetdinova, H. A. (2002). Naukovo-praktychni rekomendatsiyi z utrymannia laboratornykh tvaryn ta roboty z nymy. Kyiv: Avitsena, 155.
Wilson, A. P. (2000). Cytotoxicity and viability assays in animal cell culture: A practical approach. Oxford University Press, 165.
Reiner, N. E. (Ed.) (2009). Macrophages and dendritic cells. Methods and Protocols. Humana Press, 368. doi: https://doi.org/10.1007/978-1-59745-396-7
Dovgiy, R. S., Shitikov, D. V., Pishel, I. N., Opeida, E. V., Skivka, L. M. (2015). Functional state and metabolic polarization of splenic macrophages of old immunized mice. Problemy stareniya i dolgoletiya, 24 (2), 144–152. Available at: http://geront.kiev.ua/library/psid/2015-2.pdf

👁 27
⬇ 21
Published
2021-05-31
How to Cite
Chumak, A., Shcherbina, V., Fedosova, N., & Chekhun, V. (2021). Polarization of macrophages of mice under the influence of lectin from Bacillus subtilis IMV B-7724. EUREKA: Life Sciences, (3), 3-10. https://doi.org/10.21303/2504-5695.2021.001878
Section
Agricultural and Biological Sciences