Biofilm formation and antibiotic resistance in staphylococcus isolated from different objects

Keywords: biofilms, staphylococci, intercellular adhesion, antibiotic resistance, LA-MRS

Abstract

Staphylococci have a wide range of pathogenic properties, among which stands increased resistance to antibiotics and the ability to form a biofilm. Being divided into coagulase-positive and coagulase-negative, they have different and, at the same time, common biological properties and may be a source of genetic material for each other.

The aim of the study was to examine the properties of staphylococci, isolated from various objects (milk, pigs, companion animals, humans), their resistance to antibiotics, the ability to form a biofilm and the presence of genes, responsible for resistance to methicillin and biofilm formation.

In this study we used 89 Staphylococci strains. 18 (20.2 %) strains were coagulase-positive, where 2 (2.2 %) strains, isolated from different animals and humans, had a complete set of phenotypic (plasma coagulation, biofilm formation, resistance to oxacillin and benzylpenicillin) and genotypic (mec A, fem B, ica A, ica D) signs of pathogenicity.

Coagulase-negative staphylococci, isolated from various animals and humans, had resistance to oxacillin, benzylpenicillin and the ability to form biofilms, and also had the corresponding genes in their structure (mec A, ica AB, ica D) in 3.3 % of cases.

Staphylococci, isolated from different animals and humans, were able to form a biofilm and had the appropriate set of genes (ica D, ica AB) in 5.6 % of cases.

Downloads

Download data is not yet available.

Author Biographies

Yurii Vishovan, National University of Life and Environmental Sciences of Ukraine

Ukrainian Laboratory of Quality and Safety of Agricultural Products

Valerii Ushkalov, National University of Life and Environmental Sciences of Ukraine

Department of Epizootology Microbiology and Virology

Lilia Vygovska, National University of Life and Environmental Sciences of Ukraine

Ukrainian Laboratory of Quality and Safety of Agricultural Products

Liudmyla Ishchenko, National University of Life and Environmental Sciences of Ukraine

Ukrainian Laboratory of Quality and Safety of Agricultural Products

Aidyn Salmanov, Scientific Research Laboratory of Shupik National Healthcare University of Ukraine

Research Laboratory

Liubov Kalakailo, National University of Life and Environmental Sciences of Ukraine

Department of molecular genetic research

Ukrainian Laboratory of Quality and Safety of Agricultural Products

Andrii Hranat, National University of Life and Environmental Sciences of Ukraine

Ukrainian Laboratory of Quality and Safety of Agricultural Products

Serhii Boianovskiy, National University of Life and Environmental Sciences of Ukraine

Ukrainian Laboratory of Quality and Safety of Agricultural Products

References

Vitale, M., Galluzzo, P., Buffa, P. G., Carlino, E., Spezia, O., Alduina, R. (2019). Comparison of Antibiotic Resistance Profile and Biofilm Production of Staphylococcus aureus Isolates Derived from Human Specimens and Animal-Derived Samples. Antibiotics, 8 (3), 97. doi: http://doi.org/10.3390/antibiotics8030097

Adame-Gómez, R., Castro-Alarcón, N., Vences-Velázquez, A., Toribio-Jiménez, J., Pérez-Valdespino, A., Leyva-Vázquez, M.-A., Ramírez-Peralta, A. (2020). Genetic Diversity and Virulence Factors of S. aureus Isolated from Food, Humans, and Animals. International Journal of Microbiology, 2020, 1–10. doi: http://doi.org/10.1155/2020/1048097

Diekema, D. J., Pfaller, M. A., Shortridge, D., Zervos, M., Jones, R. N. (2019). Twenty-Year Trends in Antimicrobial Susceptibilities Among Staphylococcus aureus From the SENTRY Antimicrobial Surveillance Program. Open Forum Infectious Diseases, 6 (Supplement_1), S47–S53. doi: http://doi.org/10.1093/ofid/ofy270

Heilmann, C., Ziebuhr, W., Becker, K. (2019). Are coagulase-negative staphylococci virulent? Clinical Microbiology and Infection, 25 (9), 1071–1080. doi: http://doi.org/10.1016/j.cmi.2018.11.012

Otto, M. (2012). Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection. BioEssays, 35 (1), 4–11. doi: http://doi.org/10.1002/bies.201200112

Haag, A. F., Fitzgerald, J. R., Penadés, J. R. (2019). Staphylococcus aureus in Animals. Microbiology Spectrum, 7 (3). doi: http://doi.org/10.1128/microbiolspec.gpp3-0060-2019

Loncaric, I., Tichy, A., Handler, S., Szostak, M., Tickert, M., Diab-Elschahawi, M. et. al. (2019). Prevalence of Methicillin-Resistant Staphylococcus sp. (MRS) in Different Companion Animals and Determination of Risk Factors for Colonization with MRS. Antibiotics, 8 (2), 36. doi: http://doi.org/10.3390/antibiotics8020036

Kozytska, T., Garkavenko, T. (2019). Circulation of Methicillin-resistant Staphylococcus (MRS) in Livestock and Domestic Animals. Proceedings of the BTRP Ukraine Regional One Health Research Symposium. Available from: https://labukraineblog.files.wordpress.com/2019/05/2019-swmp-symposium-program-final-lowres.pdf

Lozano, C., Gharsa, H., Ben Slama, K., Zarazaga, M., Torres, C. (2016). Staphylococcus aureus in Animals and Food: Methicillin Resistance, Prevalence and Population Structure. A Review in the African Continent. Microorganisms, 4 (1), 12. doi: http://doi.org/10.3390/microorganisms4010012

Bergerbachi, B., Tschierske, M. (1998). Role of fem factors in methicillin resistance. Drug Resistance Updates, 1 (5), 325–335. doi: http://doi.org/10.1016/s1368-7646(98)80048-4

Jonas, D., Speck, M., Daschner, F. D., Grundmann, H. (2002). Rapid PCR-Based Identification of Methicillin-Resistant Staphylococcus aureus from Screening Swabs. Journal of Clinical Microbiology, 40 (5), 1821–1823. doi: http://doi.org/10.1128/jcm.40.5.1821-1823.2002

Gómez-Sanz, E., Ceballos, S., Ruiz-Ripa, L., Zarazaga, M., Torres, C. (2019). Clonally Diverse Methicillin and Multidrug Resistant Coagulase Negative Staphylococci Are Ubiquitous and Pose Transfer Ability Between Pets and Their Owners. Frontiers in Microbiology, 10. doi: http://doi.org/10.3389/fmicb.2019.00485

Kaspar, U., von Lützau, A., Schlattmann, A., Roesler, U., Köck, R., Becker, K. (2018). Zoonotic multidrug-resistant microorganisms among small companion animals in Germany. PLOS ONE, 13 (12), e0208364. doi: http://doi.org/10.1371/journal.pone.0208364

Palma, E., Tilocca, B., Roncada, P. (2020). Antimicrobial Resistance in Veterinary Medicine: An Overview. International Journal of Molecular Sciences, 21 (6), 1914. doi: http://doi.org/10.3390/ijms21061914

Diekema, D. J., Pfaller, M. A., Shortridge, D., Zervos, M., Jones, R. N. (2019). Twenty-Year Trends in Antimicrobial Susceptibilities Among Staphylococcus aureus From the SENTRY Antimicrobial Surveillance Program. Open Forum Infectious Diseases, 6 (Supplement_1), S47–S53. doi: http://doi.org/10.1093/ofid/ofy270

Vishovan, J., Ushkalov, V. (2018). Spread of staphylococcus and diseases caused by them. Visnyk Agrarnoi Nauky, 96 (2), 36–42. doi: http://doi.org/10.31073/agrovisnyk201802-06

Vishovan, Y., Ushkalov, V., Kepple, O., Granate, A. (2020). Antimicrobial resistance and biological properties of Staphylococci isolated from pigs. One Health & Risk Management, 1 (1), 58–63. doi: http://doi.org/10.38045/ohrm.2020.1.09

Vishovan, Y., Ushkalov, V., Vygovska, L., Machuskyy, O., Hranat, A., Shaiko, A., Boianovskiy, S. (2020). Biological properties of staphylococci derived from cats and dogs. Ukrainian Journal of Veterinary Sciences, 11 (3), 56–64. doi: http://doi.org/10.31548/ujvs2020.03.006

CDC. Antibiotic Resistance Threats in the United States (2019). Atlanta: U.S. Department of Health and Human Services, CDC. doi: http://dx.doi.org/10.15620/cdc:82532

Ahmadrajabi, R., Layegh-Khavidaki, S., Kalantar-Neyestanaki, D., Fasihi, Y. (2017). Molecular analysis of immune evasion cluster (IEC) genes and intercellular adhesion gene cluster (ICA) among methicillin-resistant and methicillin-sensitive isolates of Staphylococcus aureus. Journal of preventive medicine and hygiene, 58 (4), E308–E314. doi: http://doi.org/10.15167/2421-4248/jpmh2017.58.4.711

Arciola, C. R., Campoccia, D., Ravaioli, S., Montanaro, L. (2015). Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Frontiers in Cellular and Infection Microbiology, 5. doi: http://doi.org/10.3389/fcimb.2015.00007

Otto, M. (2018). Staphylococcal Biofilms. Microbiology Spectrum, 6 (4). doi: http://doi.org/10.1128/microbiolspec.gpp3-0023-2018

Paharik, A. E., Horswill, A. R. (2016). The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response. Microbiology Spectrum, 4 (2). doi: http://doi.org/10.1128/microbiolspec.vmbf-0022-2015

Eucast. The european committee on antimicrobial susceptibility testing (2020). Available at: http://www.eucast.org/

Determination of susceptibility of microorganisms to antibacterial drugs (2007). Law of Ministry of health of Ukraine No. 167. 05.04.2007. Available at: https://zakon.rada.gov.ua/rada/show/v0167282-07

Kukhtyn, M., Krushelnytska, N. (2014). Forming of biofilms of microorganisms obtained from milking equipment. The Animal Biology, 16 (1), 95–103.

Szweda, P., Schielmann, M., Milewski, S., Frankowska, A., Jakubczak, A. (2012). Biofilm production and Presence of ica and bap Genes in Staphylococcus aureus Strains Isolated from Cows with Mastitis in the Eastern Poland. Polish Journal of Microbiology, 61 (1), 65–69. doi: http://doi.org/10.33073/pjm-2012-009

Frebourg, N. B., Lefebvre, S., Baert, S., Lemeland, J. F. (2000). PCR-Based assay for discrimination between invasive and contaminating Staphylococcus epidermidis strains. Journal of clinical microbiology, 38 (2), 877–880. doi: http://doi.org/10.1128/jcm.38.2.877-880.2000

Garkavenko, T. O., Gorbatyuk, O. I., Kozytska, T. G., Andriyashchuk, V. O., Kukhtin, D. M., Kovalenko, V. L. et. al. (2020). Study of the ability of S. aureus field isolates selected from raw materials and livestock products to form biofilms. Bulletin “Veterinary Biotechnology”, 37, 20–30. doi: http://doi.org/10.31073/vet_biotech37-02

Berhilevych, O. М., Kasianchuk, V. V., Kukhtyn, M. D., Lotskin, I. М., Garkavenko, T. O., Shubin, P. A. (2017). Characteristics of antibiotic sensitivity of Staphylococcus aureus isolated from dairy farms in Ukraine. Regulatory Mechanisms in Biosystems, 8 (4), 559–563. doi: http://doi.org/10.15421/021786

Gorbatyuk, O. I., Garkavenko, T. O., Kozytska, T. G., Ordinska, D. O., Musiec, I. V., Schur, N. V. (2019). Bacteriological monitoring of staphylococcal infection in pigs, pork and ready-to-eat products from pork in Ukraine, biological risks for human. Scientific and Technical Bulletin оf State Scientific Research Control Institute of Veterinary Medical Products and Fodder Additives аnd Institute of Animal Biology, 20 (2), 194–200. doi: http://doi.org/10.36359/scivp.2019-20-2.25


👁 161
⬇ 162
Published
2021-07-30
How to Cite
Vishovan, Y., Ushkalov, V., Vygovska, L., Ishchenko, L., Salmanov, A., Bilan, A., Kalakailo, L., Hranat, A., & Boianovskiy, S. (2021). Biofilm formation and antibiotic resistance in staphylococcus isolated from different objects. EUREKA: Life Sciences, (4), 58-65. https://doi.org/10.21303/2504-5695.2021.001925
Section
Immunology and Microbiology