Evaluation of cytotoxic activity of live toxoplasma gondii tachyzoites and toxoplasma antigen on MCF-7 human breast cancer cell line

Keywords: novel chemotherapeutic agents, Toxoplasma tachyzoites, Toxoplasma antigen, MCF-7 cell line


The aim of this study was to investigate the cytotoxic potency of live Toxoplasma gondii tachyzoites as well as Toxoplasma antigen on MCF-7 human breast cancer cell line. Cancer cell lines are considered an essential preliminary step towards in-vitro investigation of the potential antineoplastic impact of novel chemotherapeutic agents. Pathogens, including viruses, bacteria, and parasites are noticeably under investigation, considering their potential antineoplastic activity. Some have attained a steady position in the clinical field as hepatitis B virus, human papilloma virus and BCG immunization. Toxoplasma gondii is an apicomplexan parasite with promising antineoplastic activity. In this study, live Toxoplasma tachyzoites provoked a direct cytotoxic effect on MCF-7 in a dose dependent manner, while Toxoplasma antigen didn’t induce such impact.

Skipping the direct cytotoxic effect of Toxoplasma antigen doesn’t totally divert the possible antineoplastic activity of Toxoplasma antigen. Potential alternative immune mediated mechanisms could be an alternative. Further in-vivo studies in different cancer models are mandatory to investigate the underlying mechanisms of antineoplastic activity of Toxoplasma gondii


Download data is not yet available.

Author Biographies

Maha M. Eissa, Alexandria University

Faculty of Medicine

Department of Medical Parasitology

Maha R. Gaafar, Alexandria University

Faculty of Medicine

Department of Medical Parasitology

Layla K. Younis, Alexandria University

Faculty of Medicine

Department of Pathology

Cherine A. Ismail, Alexandria University

Faculty of Medicine

Department of Clinical Pharmacology

Nahla El Skhawy, Alexandria University

Faculty of Medicine

Department of Medical Parasitology


Zhang, Y.-B., Pan, X.-F., Chen, J., Cao, A., Zhang, Y.-G., Xia, L. et. al. (2020). Combined lifestyle factors, incident cancer, and cancer mortality: a systematic review and meta-analysis of prospective cohort studies. British Journal of Cancer, 122 (7), 1085–1093. doi: https://doi.org/10.1038/s41416-020-0741-x

Siegel, R. L., Miller, K. D., Jemal, A. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70 (1), 7–30. doi: https://doi.org/10.3322/caac.21590

Chen, L., He, Z., Qin, L., Li, Q., Shi, X., Zhao, S. et. al. (2011). Antitumor Effect of Malaria Parasite Infection in a Murine Lewis Lung Cancer Model through Induction of Innate and Adaptive Immunity. PLoS ONE, 6 (9), e24407. doi: https://doi.org/10.1371/journal.pone.0024407

Kim, J.-O., Jung, S.-S., Kim, S.-Y., Kim, T. Y., Shin, D.-W., Lee, J.-H., Lee, Y.-H. (2007). Inhibition of Lewis Lung Carcinoma Growth by Toxoplasma gondii through Induction of Th1 Immune Responses and Inhibition of Angiogenesis. Journal of Korean Medical Science, 22 (Suppl), S38. doi: https://doi.org/10.3346/jkms.2007.22.s.s38

Pyo, K.-H., Jung, B.-K., Chai, J.-Y., Shin, E.-H. (2010). Suppressed CD31 Expression in Sarcoma-180 Tumors after Injection with Toxoplasma gondii Lysate Antigen in BALB/c Mice. The Korean Journal of Parasitology, 48 (2), 171. doi: https://doi.org/10.3347/kjp.2010.48.2.171

Hossein, Y., Seyedeh, M., Nahid, S., Nahid, M., Shima, D., Morteza, Y. (2015). Low titer of antibody against Toxoplasma gondii may be related to resistant to cancer. Journal of Cancer Research and Therapeutics, 11 (2), 305. doi: https://doi.org/10.4103/0973-1482.144638

Mohamadi, F., Shakibapour, M., Sharafi, S., Andalib, A., Tolouei, S., Yousofi Darani, H. (2019). Anti-Toxoplasma gondii antibodies attach to mouse cancer cell lines but not normal mouse lymphocytes. Biomedical Reports. doi: https://doi.org/10.3892/br.2019.1186

Ferreira, D., Adega, F., Chaves, R. (2013). The Importance of Cancer Cell Lines as in vitro Models in Cancer Methylome Analysis and Anticancer Drugs Testing. Oncogenomics and Cancer Proteomics - Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer. doi: https://doi.org/10.5772/53110

Dai, X., Cheng, H., Bai, Z., Li, J. (2017). Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. Journal of Cancer, 8 (16), 3131–3141. doi: https://doi.org/10.7150/jca.18457

Comşa, Ş., Cîmpean, A. M., Raica, M. (2015). The story of MCF-7 breast cancer cell line 40 years of experience in research. Anticancer Research, 35, 3147–3154.

Eissa, M. M., El-Azzouni, M. Z., Mady, R. F., Fathy, F. M., Baddour, N. M. (2012). Initial characterization of an autoclaved Toxoplasma vaccine in mice. Experimental Parasitology, 131 (3), 310–316. doi: https://doi.org/10.1016/j.exppara.2012.05.001

Hamid, B., Schlosser-Brandenburg, J., Bechtold, L., Ebner, F., Rausch, S., Hartmann, S. (2021). Early Immune Initiation by Porcine Cells following Toxoplasma gondii Infection versus TLR Ligation. Microorganisms, 9 (9), 1828. doi: https://doi.org/10.3390/microorganisms9091828

Rajkapoor, B., Sankari, M., Sumithra, M., Anbu, J., Harikrishnan, N., Gobinath, M. et. al. (2007). Antitumor and Cytotoxic Effects ofPhyllanthus polyphylluson Ehrlich Ascites Carcinoma and Human Cancer Cell Lines. Bioscience, Biotechnology, and Biochemistry, 71 (9), 2177–2183. doi: https://doi.org/10.1271/bbb.70149

Figueroa, D., Asaduzzaman, M., Young, F. (2019). Effect of Chemotherapeutics and Tocopherols on MCF-7 Breast Adenocarcinoma and KGN Ovarian Carcinoma Cell LinesIn Vitro. BioMed Research International, 2019, 1–13. doi: https://doi.org/10.1155/2019/6146972

Wang, G., Gao, M. (2016). Influence of Toxoplasma gondii on in vitro proliferation and apoptosis of hepatoma carcinoma H7402 cell. Asian Pacific Journal of Tropical Medicine, 9 (1), 63–66. doi: https://doi.org/10.1016/j.apjtm.2015.12.013

Choo, J. D., Lee, J. S., Kang, J. S., Lee, H. S., Yeom, J. Y., Lee, Y. H. (2005). Inhibitory effects of Toxoplasma antigen on proliferation and invasion of human glioma cells. Journal of Korean Neurosurgical Society, 37 (2), 129–136. Available at: https://www.jkns.or.kr/upload/pdf/0042005025.pdf

Saravanan, B. C., Sreekumar, C., Bansal, G. C., Ray, D., Rao, J. R., Mishra, A. K. (2003). A rapid MTT colorimetric assay to assess the proliferative index of two Indian strains of Theileria annulata. Veterinary Parasitology, 113 (3-4), 211–216. doi: https://doi.org/10.1016/s0304-4017(03)00062-1

Guallar-Garrido, S., Julián, E. (2020). Bacillus Calmette-Guérin (BCG) Therapy for Bladder Cancer: An Update. ImmunoTargets and Therapy, 9, 1–11. doi: https://doi.org/10.2147/itt.s202006

Waldman, A. D., Fritz, J. M., Lenardo, M. J. (2020). A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology, 20 (11), 651–668. doi: https://doi.org/10.1038/s41577-020-0306-5

Arshadi, N., Mousavi, S. L., Amani, J., Nazarian, S. (2020). Immunogenic Potency of Formalin and Heat Inactivated E. coli O157:H7 in Mouse Model Administered by Different Routes. Avicenna journal of medical biotechnology, 12 (3), 194–200.

Rhee, E. G., Mendez, S., Shah, J. A., Wu, C., Kirman, J. R., Turon, T. N. et. al. (2002). Vaccination with Heat-killed Leishmania Antigen or Recombinant Leishmanial Protein and CpG Oligodeoxynucleotides Induces Long-Term Memory CD4+and CD8+T Cell Responses and Protection Against Leishmania major Infection. Journal of Experimental Medicine, 195 (12), 1565–1573. doi: https://doi.org/10.1084/jem.20020147

Mutapi, F., Billingsley, P. F., Secor, W. E. (2013). Infection and treatment immunizations for successful parasite vaccines. Trends in Parasitology, 29 (3), 135–141. doi: https://doi.org/10.1016/j.pt.2013.01.003

Baird, J. R., Byrne, K. T., Lizotte, P. H., Toraya-Brown, S., Scarlett, U. K., Alexander, M. P. et. al. (2012). Immune-Mediated Regression of Established B16F10 Melanoma by Intratumoral Injection of AttenuatedToxoplasma gondiiProtects against Rechallenge. The Journal of Immunology, 190 (1), 469–478. doi: https://doi.org/10.4049/jimmunol.1201209

Sanders, K. L., Fox, B. A., Bzik, D. J. (2015). AttenuatedToxoplasma gondiitherapy of disseminated pancreatic cancer generates long-lasting immunity to pancreatic cancer. OncoImmunology, 5 (4), e1104447. doi: https://doi.org/10.1080/2162402x.2015.1104447

Sanders, K. L., Fox, B. A., Bzik, D. J. (2015). Attenuated Toxoplasma gondii Stimulates Immunity to Pancreatic Cancer by Manipulation of Myeloid Cell Populations. Cancer Immunology Research, 3 (8), 891–901. doi: https://doi.org/10.1158/2326-6066.cir-14-0235

Hafez, E. N., Moawed, F. S. M., Abdel-Hamid, G. R., Elbakary, N. M. (2020). Gamma Radiation-Attenuated Toxoplasma gondii Provokes Apoptosis in Ehrlich Ascites Carcinoma-Bearing Mice Generating Long-Lasting Immunity. Technology in Cancer Research & Treatment, 19, 153303382092659. doi: https://doi.org/10.1177/1533033820926593

Jabari, S., Keshavarz, H., Salimi, M., Morovati, H., Mohebali, M., Shojaee, S. (2018). In vitro culture of Toxoplasma gondii in HeLa, Vero, RBK and A549 cell lines. Le infezioni in medicina, 26 (2), 145–147. Available at: https://pubmed.ncbi.nlm.nih.gov/29932087/

Fox, B. A., Sanders, K. L., Rommereim, L. M., Guevara, R. B., Bzik, D. J. (2016). Secretion of Rhoptry and Dense Granule Effector Proteins by Nonreplicating Toxoplasma gondii Uracil Auxotrophs Controls the Development of Antitumor Immunity. PLOS Genetics, 12 (7), e1006189. doi: https://doi.org/10.1371/journal.pgen.1006189

👁 162
⬇ 150
How to Cite
Eissa, M. M., Gaafar, M. R., Younis, L. K., Ismail, C. A., & El Skhawy, N. (2022). Evaluation of cytotoxic activity of live toxoplasma gondii tachyzoites and toxoplasma antigen on MCF-7 human breast cancer cell line. EUREKA: Life Sciences, (2), 45-50. https://doi.org/10.21303/2504-5695.2022.002409
Immunology and Microbiology