Correction of the wake-sleep cycle by intranasal administration of dopamine in modeling of the preclinical stage of Parkinson's disease in rats

Keywords: model of Parkinson's disease, wake-sleep cycle, intranasal administration of dopamine

Abstract

Sleep disorders, which are among the earliest and most sensitive non-motor manifestations of Parkinson's disease (PD), are not diagnosed in 40–50 % of patients and are not subject to the necessary correction. In this regard, the ineffectiveness of a late start of treatment, when more than 50 % of dopamine-producing neurons are already affected, dictates the need to search for and develop approaches to the prevention and slowdown of neurodegenerative pathology at the preclinical stages of its development using adequate experimental models. Taking into account the low bioavailability of dopamine (DA) and data on the advantages of the intranasal route of administration in comparison with oral and parenteral methods of drug delivery to the CNS, the aim of the work was to study the neurophysiological features of the wake-sleep cycle as early manifestations of nigrostriatal insufficiency and the effect of intranasal administration of DA on the quality of sleep during the formation of the preclinical stage of PD in rats. It was shown that under the conditions of modeling PD, the cyclic organization of sleep with a predominance of incomplete cycles against the background of hyperproduction of slow-wave sleep and REM phases are early manifestations of nigrostriatal insufficiency. Course administration of DA at a dose of 3 mg/kg is accompanied by the normalization of sleep quality in the form of reduction (by 76 %) in the number of incomplete cycles. The preventive orientation of the obtained effects may indicate a certain therapeutic potential of intranasal delivery of DA to the brain, aimed at slowing down the processes of neurodegeneration and possibly delaying its clinical manifestation

Downloads

Download data is not yet available.

Author Biographies

Valentina Geiko, State Institution “Institute of Neurology, Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine”

Laboratory of Neurophysiology, Immunology and Biochemistry

Olga Berchenko, State Institution “Institute of Neurology, Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine”

Laboratory of Neurophysiology, Immunology and Biochemistry

References

Chaudhuri, K. R., Schapira, A. H. V. (2009). Non-motor symptoms of Park-inson's disease: dopaminergic pathophysiology and treatment. The Lancet Neurology, 8 (5), 464–474. doi: https://doi.org/10.1016/s1474-4422(09)70068-7

Kim, S., Kwon, S.-H., Kam, T.-I., Panicker, N., Karuppagounder, S. S., Lee, S. et al. (2019). Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson’s Disease. Neuron, 103 (4), 627-641.e7. doi: https://doi.org/10.1016/j.neuron.2019.05.035

Paredes-Rodriguez, E., Vegas-Suarez, S., Morera-Herreras, T., De Deurwaerdere, P., Miguelez, C. (2020). The Noradrenergic System in Parkinson’s Disease. Frontiers in Pharmacology, 11. doi: https://doi.org/10.3389/fphar.2020.00435

Braak, H., Ghebremedhin, E., Rüb, U., Bratzke, H., Del Tredici, K. (2004). Stages in the development of Parkinson’s disease-related pathology. Cell and Tissue Research, 318 (1), 121–134. doi: https://doi.org/10.1007/s00441-004-0956-9

Martinez-Martin, P., Rodriguez-Blazquez, C., Kurtis, M. M., Chaudhuri, K. R., Group, N. V. (2011). The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Movement Disorders, 26, 399–406. doi: https://doi.org/10.1002/mds.23462

Hermanowicz, N., Jones, S. A., Hauser, R. A. (2019). Impact of non-motor symptoms in Parkinson’s disease: a PMD Alliance survey. Neuropsychiatric Disease and Treatment, 15, 2205–2212. doi: https://doi.org/10.2147/ndt.s213917

Zuzuárregui, J. R. P., During, E. H. (2020). Sleep Issues in Parkinson’s Disease and Their Management. Neurotherapeutics, 17 (4), 1480–1494. doi: https://doi.org/10.1007/s13311-020-00938-y

Braak, H., Del Tredici, K. (2016). Potential pathways of abnormal Tau and α-synuclein dissemination in sporadic Alzheimer’s and Parkinson’s diseases. Cold Spring Harbor Perspectives in Biology, 8 (11), a023630. doi: https://doi.org/10.1101/cshperspect.a023630

Zhang, H., Gu, Z., An, J., Wang, C., Chan, P. (2014). Non-Motor Symptoms in Treated and Untreated Chinese Patients with Early Parkinson’s Disease. The Tohoku Journal of Experimental Medicine, 232 (2), 129–136. doi: https://doi.org/10.1620/tjem.232.129

Albers, J. A., Chand, P., Anch, A. M. (2017). Multifactorial sleep disturbance in Parkinson's disease. Sleep Medicine, 35, 41–48. doi: https://doi.org/10.1016/j.sleep.2017.03.026

Liu, C.-F., Wang, T., Zhan, S.-Q., Geng, D.-Q., Wang, J., Liu, J. et al. (2018). Management Recommendations on Sleep Disturbance of Patients with Park-inson's Disease. Chinese Medical Journal, 131 (24), 2976–2985. doi: https://doi.org/10.4103/0366-6999.247210

Amosova, N. A., Smolentseva, I. G., Guseynova, P. M., Maslyuk, O. A., Gavrilov, E. L. (2016). Narusheniya sna na ranney stadii bolezni Parkinsona u patsientov, ne prinimayuschikh protivoparkinsonicheskie preparaty. Zhurnal nevrologii i psikhiatrii im. SS Korsakova. Spetsvypuski, 116 (6), 77–81.

Postuma, R. B., Gagnon, J. F., Vendette, M., Fantini, M. L., Massicotte-Marquez, J., Montplaisir, J. (2008). Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder. Neurology, 72 (15), 1296–1300. doi: https://doi.org/10.1212/01.wnl.0000340980.19702.6e

Cochen De Cock, V. (2015). Objective Measures of the Sleep–Wake Cycle in Parkinson’s Disease. Disorders of Sleep and Circadian Rhythms in Parkinson’s Disease, 51–60. doi: https://doi.org/10.1007/978-3-7091-1631-9_4

Nodel, M. R., Ukraintseya, U. V., Yakhno, N. N. (2015). Rapid eye movement sleep behavioral disorder in Parkinson's disease. Nevrologicheskiy zhurnal, 20 (6), 28–34. Available at: https://cyberleninka.ru/article/n/sindrom-narusheniya-povedeniya-v-faze-sna-s-bystrymi-dvizheniyami-glaz-pri-bolezni-parkinsona

Nodel', M. R., Kovrov, G. V. (2017). Narusheniya sna pri bolezni Parkinsona: podkhody k lecheniyu i profilaktike. Nevrologiya, neyropsikhiatriya, psikhosomatika, 9 (4), 88–94.

Chaudhuri, K. R., Prieto-Jurcynska, C., Naidu, Y., Mitra, T., Frades-Payo, B., Tluk, S. et al. (2010). The nondeclaration of nonmotor symptoms of Parkinson’s disease to health care professionals: an international study using the nonmotor symptoms questionnaire. Movement Disorders, 25 (6), 704–709. doi: https://doi.org/10.1002/mds.22868

Koval'zon, V. M., Zavalko, I. M. (2013). Neyrokhimiya tsikla bodrstvovanie-son i bolezn' Parkinsona. Neyrokhimiya, 30 (3), 193–206.

Nodel', M. R., Yakhno, N. N., Ukraintseva, Yu. V., Dorokhov, V. B. (2014). Insomniya pri bolezni Parkinsona i ee vliyanie na kachestvo zhizni patsientov. Nevrologicheskiy zhurnal, 4, 19–27.

Hurt, C. S., Rixon, L., Chaudhuri, K. R., Moss-Morris, R., Samuel, M., Brown, R. G. (2019). Barriers to reporting non-motor symptoms to health-care providers in people with Parkinson’s. Parkinsonism & Related Disorders, 64, 220–225. doi: https://doi.org/10.1016/j.parkreldis.2019.04.014

Amara, A. W., Chahine, L. M., Videnovic, A. (2017). Treatment of Sleep Dysfunction in Parkinson’s Disease. Current Treatment Options in Neurology, 19 (7). doi: https://doi.org/10.1007/s11940-017-0461-6

Falup-Pecurariu, C., Diaconu, Ş. (2017). Sleep dysfunction in Parkinson's disease. International Review of Neurobiology, 719–742. doi: https://doi.org/10.1016/bs.irn.2017.05.033

Catalan, M. J., Molina-Arjona, J. A., Mir, P., Cubo, E., Arbelo, J. M., Mar-tinez-Martin, P. (2018). Improvement of impulse control disorders associated with levodopa–carbidopa intestinal gel treatment in advanced Parkinson’s disease. Journal of Neurology, 265 (6), 1279–1287. doi: https://doi.org/10.1007/s00415-018-8803-1

Owens-Walton, C., Jakabek, D., Li, X., Wilkes, F. A., Walterfang, M., Ve-lakoulis, D. et al. (2018). Striatal changes in Parkinson disease: An investigation of morphology, functional connectivity and their relationship to clinical symptoms. Psychiatry Research: Neuroimaging, 275, 5–13. doi: https://doi.org/10.1016/j.pscychresns.2018.03.004

Rodríguez-Nogales, C., Garbayo, E., Carmona-Abellán, M. M., Luquin, M. R., Blanco-Prieto, M. J. (2016). Brain aging and Parkinson’s disease: New therapeutic approaches using drug delivery systems. Maturitas, 84, 25–31. doi: https://doi.org/10.1016/j.maturitas.2015.11.009

Salat, D., Tolosa, E. (2013). Levodopa in the treatment of Parkinson’s disease: current status and new developments. Journal of Parkinson's Disease, 3, 255–269. doi: https://doi.org/10.3233/jpd-130186

Krishna, R., Ali, M., Moustafa, A. A. (2014). Effects of combined MAO-B inhibitors and levodopa vs. monotherapy in Parkinson’s disease. Frontiers in Aging Neuroscience, 6. doi: https://doi.org/10.3389/fnagi.2014.00180

Erdő, F., Bors, L. A., Farkas, D., Bajza, Á., Gizurarson, S. (2018). Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Research Bulletin, 143, 155–170. doi: https://doi.org/10.1016/j.brainresbull.2018.10.009

de Souza Silva, M. A., Mattern, C., Decheva, C., Huston, J. P., Sadile, A. G., Beu, M. et al. (2016). Intranasal Dopamine Reduces In Vivo [123I]FP-CIT Binding to Striatal Dopamine Transporter: Correlation with Behavioral Changes and Evidence for Pavlovian Conditioned Dopamine Response. Frontiers in Behavioral Neuroscience, 10. doi: https://doi.org/10.3389/fnbeh.2016.00080

Graff, C. L., Pollack, G. M. (2005). Nasal Drug Administration: Potential for Targeted Central Nervous System Delivery. Journal of Pharmaceutical Sciences, 94 (6), 1187–1195. doi: https://doi.org/10.1002/jps.20318

Lawrence, D. (2002). Intranasal delivery could be used to administer drugs directly to the brain. The Lancet, 359 (9318), 1674. doi: https://doi.org/10.1016/s0140-6736(02)08601-4

Ross, T. M., Martinez, P. M., Renner, J. C., Thorne, R. G., Hanson, L. R., Frey, W. H. (2004). Intranasal administration of interferon beta bypasses the blood–brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. Journal of Neuroimmunology, 151 (1-2), 66–77. doi: https://doi.org/10.1016/j.jneuroim.2004.02.011

Vyas, T., Shahiwala, A., Marathe, S., Misra, A. (2005). Intranasal Drug Delivery for Brain Targeting. Current Drug Delivery, 2 (2), 165–175. doi: https://doi.org/10.2174/1567201053586047

Tang, S., Wang, A., Yan, X., Chu, L., Yang, X., Song, Y. et al. (2019). Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Delivery, 26 (1), 700–707. doi: https://doi.org/10.1080/10717544.2019.1636420

Wang, A.-L., Fazari, B., Chao, O. Y., Nikolaus, S., Trossbach, S. V., Korth, C. et al. (2017). Intra-nasal dopamine alleviates cognitive deficits in tgDISC1 rats which overexpress the human DISC1 gene. Neurobiology of Learning and Memory, 146, 12–20. doi: https://doi.org/10.1016/j.nlm.2017.10.015

Gartziandia, O., Egusquiaguirre, S. P., Bianco, J., Pedraz, J. L., Igartua, M., Hernandez, R. M. et al. (2016). Nanoparticle transport across in vitro olfactory cell monolayers. International Journal of Pharmaceutics, 499 (1-2), 81–89. doi: https://doi.org/10.1016/j.ijpharm.2015.12.046

Singh, K., Ahmad, Z., Shakya, P. et al. (2016). Nano formulation: a novel approach for nose to brain drug delivery. Journal of Chemical and Pharmaceutical Research, 82, 208–215.

Buresh, Ya., Petran', M., Zakhar, I. (1962). Elektrofiziologicheskie metody issledovaniya. Moscow: Izd-vo inostr. lit., 466.

Paxinos, G., Watson, C. (1982). The rat brain in stereotaxic coordinates. Ac-ademic Press.

Berchenko, O. G. (1990). Neyrofiziologicheskaya organizatsiya tsikla bodrstvovanie-son pri alkogolizme krys, sformirovannom v razlichnye fazy emotsional'noy aktivnosti. Fiziologicheskiy zhurnal, 76 (6), 713–719.

De Souza Silva, M. A., Topic, B., Huston, J. P., Mattern, C. (2008). Intranasal dopamine application increases dopaminergic activity in the neostriatum and nucleus accumbens and enhances motor activity in the open field. Synapse, 62 (3), 176–184. doi: https://doi.org/10.1002/syn.20484

Buddenberg, T. E., Topic, B., Mahlberg, E. D., de Souza Silva, M. A., Huston, J. P., Mattern, C. (2008). Behavioral Actions of Intranasal Application of Dopamine: Effects on Forced Swimming, Elevated Plus-Maze and Open Field Parameters. Neuropsychobiology, 57 (1-2), 70–79. doi: https://doi.org/10.1159/000135640

Makarenko, A. N., Grigor'eva, T. I., Kaluev, A. V. (2006). Morfo-funktsional'nye osobennosti organizatsii obonyatel'nogo analizatora i problema aksonal'nogo transporta veschestv. Neyronauki, 2 (4), 18–28.

Berchenko, O., Usmentseva, Y. (2013). Recovery of nigrostriatal dopaminergic system insufficiency by allotransplantation of embryonic brain tissue. World Journal of Neuroscience, 03 (04), 240–245. doi: https://doi.org/10.4236/wjns.2013.34032

Correction of the wake-sleep cycle by intranasal administration of dopamine in modeling of the preclinical stage of Parkinson's disease in rats

👁 37
⬇ 24
Published
2022-11-16
How to Cite
Geiko, V., & Berchenko, O. (2022). Correction of the wake-sleep cycle by intranasal administration of dopamine in modeling of the preclinical stage of Parkinson’s disease in rats. EUREKA: Life Sciences, (5), 47-57. https://doi.org/10.21303/2504-5695.2022.002643
Section
Neuroscience