Water reservoirs and the war in Ukraine: environmental problems

Keywords: war, water reservoir, dams, military invasion, destruction, environmental problems, flooding

Abstract

The aim of this article is to analyze the consequences of the military invasion of the Russian Federation on February 24, 2022 on the water bodies of Ukraine. In particular, this article presents an analysis of the consequences of military operations on reservoirs.

In order to prevent the enemy from reaching the dam of the Kyiv Reservoir and to protect Kyiv from the aggressor in late February-early March of this year, the sluice of the pumping station on the Kozarovychi Dam was blown up. Because, the possible destruction of this dam could have enormous destructive consequences for the entire cascade of reservoirs and the territories adjacent to them. As a result, a huge area of about 2,500 hectares of the Irpin’ floodplain was flooded, fundamentally changing both the military and the environmental situation.

Also, Russian troops launched a missile attack on the dam of the Karachuniv Reservoir near the Kryvyi Rih city. The water level in the Ingulets River rose sharply by 2 meters, flooding the territories near the river, including part of the Kryvyi Rih city. The ecological condition of this territory was significantly damaged, private buildings were heavily flooded. Water quality in this river has deteriorated, the content of nitrogen and other elements has increased in it. The Oskol Reservoir in the east of Ukraine was also destroyed. As a result of the leakage of a significant amount of water, the muddy bottom has been exposed to water and is subject to wind erosion. The hydrological regime of the coastal area has changed. Rare species of flora and young fish population have been lost.

Destruction of reservoirs and damage to the environment will continue until the war ends. And it is necessary to do everything possible so that it ends as soon as possible

Downloads

Download data is not yet available.

Author Biographies

Maryna Ladyka, National University of Life and Environmental Sciences of Ukraine

Department of Agrosphere Ecology and Environmental Control

Vladimir Starodubtsev, National University of Life and Environmental Sciences of Ukraine

Department of Agrosphere Ecology and Environmental Control

References

Philpott, B. (2019). War time damage at two London reservoirs. Dams and Reservoirs, 29 (4), 133–138. doi: https://doi.org/10.1680/jdare.19.00010

Gascon, A. (2015). Battles on the Nile: A war for water? Bulletin de l'Association de géographes français, 92 (2). 154–166. doi: https://doi.org/10.4000/bagf.565

Hasan, M., Moody, A., Benninger, L., Hedlund, H. (2018). How war, drought, and dam management impact water supply in the Tigris and Euphrates Rivers. Ambio, 48 (3), 264–279. doi: https://doi.org/10.1007/s13280-018-1073-4

Li, B., Zhang, Q., Yang, S., Tian, Y., Li, Z. (2023). Identification of failure modes and paths of reservoir dams under explosion loads. Reliability Engineering & System Safety, 229, 108892. doi: https://doi.org/10.1016/j.ress.2022.108892

Osadcha, N., Nabyvanets, Y., Osadchyi, V., Ukhan, O., Osypov, V., Luzovitska, Y. et al. (2021). Pressures and impact analysis in the Dnipro river basin within Ukraine. EGU General Assembly 2021. doi: https://doi.org/10.5194/egusphere-egu21-6493

Starodubtsev, V. M., Ladyka, M. M., Dyachuk, P. P., Naumovska, O. I. (2021). Main features of reforming the coasts of Kaniv reservoir. Naukovi dopovidi NUBiP Ukrainy, 6 (94). doi: https://doi.org/10.31548/dopovidi2021.06.006

Стародубцев, В. М. (2012). Канівське водосховище: «Українська Венеція» чи екологічна загроза? Київ: Аграр Медіа Груп, 34.

Starodubtsev, V. M., Bogdanets, V. A. (2012). Dynamics of hydromorphic landscapes in the upper parts of Dnieper reservoirs. Water Resources, 39 (2), 180–183. doi: https://doi.org/10.1134/s0097807812010137

Serhii, S., Viktor, V., Bilous, O. (2022). The use of remote sensing data that is studying the environmental consequences of the Russian invasion of Ukraine. Research Square. doi: https://doi.org/10.21203/rs.3.rs-1770802/v1

Khan, M. Y. A., ElKashouty, M., Subyani, A. M., Tian, F. (2022). Flash Flood Assessment and Management for Sustainable Development Using Geospatial Technology and WMS Models in Abha City, Aseer Region, Saudi Arabia. Sustainability, 14 (16), 10430. doi: https://doi.org/10.3390/su141610430

Rawtani, D., Gupta, G., Khatri, N., Rao, P. K., Hussain, C. M. (2022). Environmental damages due to war in Ukraine: A perspective. Science of The Total Environment, 850, 157932. doi: https://doi.org/10.1016/j.scitotenv.2022.157932

Zhang, Y., Li, Z., Wang, J., Ge, W., Chen, X. (2022). Environmental impact assessment of dam-break floods considering multiple influencing factors. Science of The Total Environment, 837, 155853. doi: https://doi.org/10.1016/j.scitotenv.2022.155853

Sarchani, S., Koutroulis, A. G. (2022). Probabilistic dam breach flood modeling: the case of Valsamiotis dam in Crete. Natural Hazards, 114 (2), 1763–1814. https://doi.org/10.1007/s11069-022-05446-0

Derdous, O., Djemili, L., Bouchehed, H., Tachi, S. E. (2015). A GIS based approach for the prediction of the dam break flood hazard – A case study of Zardezas reservoir “Skikda, Algeria.” Journal of Water and Land Development, 27 (1), 15–20. doi: https://doi.org/10.1515/jwld-2015-0020

Chateauraynaud, F., Debaz, J. (2021). Plurality of temporalities, complexity and contingency in repairing after dam failures in Minas Gerais. Rethinking Post-Disaster Recovery, 143–161. doi: https://doi.org/10.4324/9781003184782-10

Dubnyak, S. S. (2004). Estimation of a water regime and throughput of upper part of Kaniv reservoir in conditions of an intensive urbanization. Hidrolohiya, hidrokhimiya, hidroekolohiya, 6, 145–158. Available at: http://www.ekobereg.com/files/4.doc

Naukovtsi Akademiyi sprohnozuvaly kharakter zatoplennia terytoriy Kyivshchyny, sprychynenoho rosiyskym vtorhnenniam (2022). Natsionalna akademiia nauk Ukrainy. Available at: https://www.nas.gov.ua/UA/Messages/news/Pages/View.aspx?MessageID=9011

Chen, Y., Lu, L., Wang, G., Lu, W. (2021). Review on the blast-resistance performance evaluation of dams (Review). Tumu Gongcheng Xuebao/China Civil Engineering Journal, 54 (10), 9–19. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117106927&partnerID=40&md5=4658f9887d1b52908f4a0b43b9b26e84

de Oliveira, A. M., Conti, J. B., Santos, R. L., de Oliveira, L. N. A., Brito, C. A. O., Costa, F. P., de Santana, E. N. (2022). Loss of life estimation and risk level classification due to a dam break. Heliyon, 8 (4), e09257. doi: https://doi.org/10.1016/j.heliyon.2022.e09257

Arrighi, C., Rossi, L., Trasforini, E., Rudari, R., Ferraris, L., Brugioni, M., Franceschini, S., Castelli, F. (2018). Quantification of flood risk mitigation benefits: A building-scale damage assessment through the RASOR platform. Journal of Environmental Management, 207, 92–104. doi: https://doi.org/10.1016/j.jenvman.2017.11.017

Bharath, A., Shivapur, A. V., Hiremath, C. G., Maddamsetty, R. (2021). Dam break analysis using HEC-RAS and HEC-GeoRAS: A case study of Hidkal dam, Karnataka state, India. Environmental Challenges, 5, 100401. doi: https://doi.org/10.1016/j.envc.2021.100401

von Häfen, H., Krautwald, C., Bihs, H., Goseberg, N. (2022). Dam-Break Waves’ Hydrodynamics on Composite Bathymetry. Frontiers in Built Environment, 8. doi: https://doi.org/10.3389/fbuil.2022.877378

Khilchevskyi, V. K., Mezentsev, K. V. (2021). Water conflicts and Ukraine: Donbas region. 15th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment. doi: https://doi.org/10.3997/2214-4609.20215k2004

Kramarenko, O. (2022). Unaslidok poshkodzhennia hrebli u richtsi Inhulets pidvyshchyvsia vmist zaliza ta azotu. Krivbass City. Available at: http://krivbass.city/news/view/unaslidok-poshkodzhennya-grebli-u-richtsi-ingulets-pidvishhivsya-vmist-zaliza-ta-azotu

Kolodezhna, V., Vasyliuk, O. (2022). Should the Oskil Reservoir be rebuilt after the war? UNCG. Available at: https://uncg.org.ua/en/should-the-oskil-reservoir-be-rebuilt-after-the-war/

Rosiyskyi teror maie prohraty, Ukraina y usia Yevropa maiut peremohty – zvernennia Prezydenta Volodymyra Zelenskoho do Yevropeiskoi rady. Prezydent Ukrainy Volodymyr Zelenskyi. Ofitsiyne internet-predstavnytstvo. Available at: https://www.president.gov.ua/news/rosijskij-teror-maye-prograti-ukrayina-j-usya-yevropa-mayut-78613

Yaku terytoriu Ukrainy zatopyt u razi pidryvu Kakhovskoi HES: ziavylasia karta (2022). Hlavred. Available at: https://glavred.net/ukraine/kakuyu-territoriyu-ukrainy-zatopit-v-sluchae-podryva-kahovskoy-ges-poyavilas-karta-10419557.html

The war increases the risk of emergencies at hydropower plants (HPPS) (2022). Environment. People. Law. Available at: http://epl.org.ua/en/announces/vijna-pidvyshhuye-ryzyky-nadzvychajnyh-sytuatsij-na-ges/

Russian Offensive Campaign Assessment (2022). Institute for the Study of War. Available at: https://www.understandingwar.org/backgrounder/russian-offensive-campaign-assessment-october-20

Water reservoirs and the war in Ukraine: environmental problems

👁 131
⬇ 57
Published
2022-11-28
How to Cite
Ladyka, M., & Starodubtsev, V. (2022). Water reservoirs and the war in Ukraine: environmental problems. EUREKA: Life Sciences, (6), 36-43. https://doi.org/10.21303/2504-5695.2022.002664
Section
Environmental Science