IMPROVING THE TECHNIQUE OF SCRAMBLED DESSERTS USING THE FOOD SUPPLEMENT “MAGNETOFOODâ€
Abstract
For improving the technology of scrambled dessert products, a food supplement, based on the nanopowder of oxides of two- and trivalent iron “Magnetofood” was introduced in the recipe composition. The object of the studies is base recipes: one of mousse “Cranberry” and sambuk “Apple”. For determining technological characteristics and quality parameters, conventional standard methods were used.
It has been established, that introduction of the food supplement “Magnetofood” in amount 0,1 %, 0,15 %, 0,2 % of the recipe mixture mass improves consumption properties of scrambled desserts. The mean value of the organoleptic analysis increases by (1,25±0,1) points. The density also decreases by (29±1) kg/m3 for mousses, by (26±1) kg/m3 for sambuks, and scrambling duration – by ~ 3 minutes. At storing during 24 hours at h=(90±2) %, the microbial contamination of the surface of samples decreases – QMAFAnM in 10 times, yeasts – in 2 times, molds – in 2 times.
It has been established, that introduction of the supplement “Magnetofood” favors the growth of the foam-creating ability in average: by (40±2) % for mousses, by (55±3) % for sambuks. The porosity increases by (14,3±0,7) % for mousses, by (12,7±0, 6) % for sambuks. The foam structure stability of scrambled desserts improves by (14±1,1) %. The food supplement “Magnetofood” also raises the effective viscosity by (32 ±1) Pa·s for mousses and by (41±2) Pa·s for sambuks and the mechanical strength of scrambled desserts in 1,23 times.
The highest parameters were inherited to mousses and sambuks with supplement “Magnetofood” mass share 0,15 %.
There have been experimentally substantiated scrambling technological parameters and regimes of recipe mixtures of berry-fruit mousses and sambuks, modified by the food supplement “Magnetofood”. The total scrambling duration is (14–16) minutes. The initial scrambling speed of the berry-fruit base is (2,0–2,2) s-1, at that the scrambling time is (5–6)·60s. Then the recipe mixture is scrambled at speed (3,3–3,5) s-1 during (3–4)·60s. Scrambling is finished at speed (2,0–2,2) s-1. The distinctive feature of the improved technology is premixing of the food supplement “Magnetofood” with gelatin, realized before the technological operation of soaking gelatin in cold water.
The obtained experimental data may be used at developing innovative technologies of scrambled dessert products with the food supplement “Magnetofood”.
Downloads
References
Horal'chuk, A. B. (2016). Naukove obgruntuvannya tekhnolohiy napivfabrykativ byvnykh dlya kulinarnoyi ta kondyters'koyi produktsiyi z polifaznoyu strukturoyu.Kharkiv: KhDUKhT, 42.
Kynin, A. Sozdanie "pustoty" v materialah. Available at: http://www.metodolog.ru/00129/00129.html
Osipov, A. A. (2007). Primenenie zagustiteley i stabilizatorov pri proizvodstve dzhemov i drugih fruktovo-yagodnyh produktov. Pishchevaya promyshlennost', 4, 52–53.
Mayurnikova, L. A., Latkov, N. Yu. (2004). Sozdanie molochnyh desertov profilakticheskogo naznacheniya. Hranenie i pererabotka sel'hozsyr'ya: Teoreticheskiy zhurnal, 3, 60–62.
Dickinson, E. (2006). Interfacial Particles in Food Emulsions and Foams. Colloidal Particles at Liquid Interfaces, 298–327. doi: https://doi.org/10.1017/cbo9780511536670.009
Percevoy, F. V. et. al. (2003). Proizvodstvo zheleynoy i vzbivnoy produkcii s ispol'zovaniem modifikatorov. Dnepr: Porogi, 201.
Lazidis, A., Hancocks, R. D., Spyropoulos, F., Kreuß, M., Berrocal, R., Norton, I. T. (2016). Whey protein fluid gels for the stabilisation of foams. Food Hydrocolloids, 53, 209–217. doi: https://doi.org/10.1016/j.foodhyd.2015.02.022
Green, A. J., Littlejohn, K. A., Hooley, P., Cox, P. W. (2013). Formation and stability of food foams and aerated emulsions: Hydrophobins as novel functional ingredients. Current Opinion in Colloid & Interface Science, 18 (4), 292–301. doi: https://doi.org/10.1016/j.cocis.2013.04.008
Dickinson, E. (2015). Structuring of colloidal particles at interfaces and the relationship to food emulsion and foam stability. Journal of Colloid and Interface Science, 449, 38–45. doi: https://doi.org/10.1016/j.jcis.2014.09.080
Murray, B. S., Durga, K., Yusoff, A., Stoyanov, S. D. (2011). Stabilization of foams and emulsions by mixtures of surface active food-grade particles and proteins. Food Hydrocolloids, 25 (4), 627–638. doi: https://doi.org/10.1016/j.foodhyd.2010.07.025
Phawaphuthanon, N., Yu, D., Ngamnikom, P., Shin, I.-S., Chung, D. (2019). Effect of fish gelatine-sodium alginate interactions on foam formation and stability. Food Hydrocolloids, 88, 119–126. doi: https://doi.org/10.1016/j.foodhyd.2018.09.041
Foshchan, A. L., Hryhorenko, A. M. (2010). Rehuliuvannia reolohichnykh ta strukturno-mekhanichnikh vlastyvostei zheleinykh vyrobiv ta napivfabrykativ na osnovi kombinovanykh system drahle utvoriuvachiv. Khlibopekarska i kondyterska promyslovist Ukrainy, 2, 29–30.
Fioramonti, S. A., Perez, A. A., Aríngoli, E. E., Rubiolo, A. C., Santiago, L. G. (2014). Design and characterization of soluble biopolymer complexes produced by electrostatic self-assembly of a whey protein isolate and sodium alginate. Food Hydrocolloids, 35, 129–136. doi: https://doi.org/10.1016/j.foodhyd.2013.05.001
Mao, L., Boiteux, L., Roos, Y. H., Miao, S. (2014). Evaluation of volatile characteristics in whey protein isolate–pectin mixed layer emulsions under different environmental conditions. Food Hydrocolloids, 41, 79–85. doi: https://doi.org/10.1016/j.foodhyd.2014.03.025
Wang, M.-P., Chen, X.-W., Guo, J., Yang, J., Wang, J.-M., Yang, X.-Q. (2019). Stabilization of foam and emulsion by subcritical water-treated soy protein: Effect of aggregation state. Food Hydrocolloids, 87, 619–628. doi: https://doi.org/10.1016/j.foodhyd.2018.08.047
Iorgacheva, E. G., Iorgacheva, E. G., Banova, S. I. (2002). Modificirovannye soeprodukty s uluchshennymi penoobrazuyushchimi i emul'giruyushchimi svoystvami. Zernovi produkty i kombikormy, 2, 23–25.
Burgos-Díaz, C., Wandersleben, T., Olivos, M., Lichtin, N., Bustamante, M., Solans, C. (2019). Food-grade Pickering stabilizers obtained from a protein-rich lupin cultivar (AluProt-CGNA®): Chemical characterization and emulsifying properties. Food Hydrocolloids, 87, 847–857. doi: https://doi.org/10.1016/j.foodhyd.2018.09.018
Ilyukha, N. G., Barsova, Z. V., Kovalenko, V. A., Tsikhanovskaya, I. V. (2010). Production technology and quality indices of a food additive based on magnetite. Eastern-European Journal of Enterprise Technologies, 6 (10 (48)), 32–35. Available at: http://journals.uran.ua/eejet/article/view/5847/5271
Tsykhanovska, I., Evlash, V., Alexandrov, A., Lazarieva, T., Svidlo, K., Gontar, T. et. al. (2018). Substantiation of the mechanism of interaction between biopolymers of ryeandwheat flour and the nanoparticles of the magnetofооd food additive in order to improve moistureretaining capacity of dough. Eastern-European Journal of Enterprise Technologies, 2 (11 (92)), 70–80. doi: https://doi.org/10.15587/1729-4061.2018.126358
Tsykhanovska, I., Evlash, V., Alexandrov, A., Lazarieva, T., Bryzytska, O. (2018). Substantiation of the interaction mechanism between the lipo- and glucoproteids of rye-wheat flour and nanoparticles of the food additive «Magnetofооd». Eastern-European Journal of Enterprise Technologies, 4 (11 (94)), 61–68. doi: https://doi.org/10.15587/1729-4061.2018.140048
Zdobnov, A. I., Cyganenko, V. A. (2009). Sbornik receptur blyud i kulinarnyh izdeliy: dlya predpriyatiy obshchestvennogo pitaniya. Kyiv: OOO "Izdatel'stvo Ariy"; Moscow: "Lada", 680.
Arkhipov, V. V., Ivannykova, T. V., Arkhipova, A. V. (2007). Restoranna sprava: Asortyment, tekhnolohiya i upravlinnia yakistiu produktsiyi v suchasnomu restorani. Kyiv: Firma «IIKOS», Tsentr navchalnoi literatury, 382.
Kafka, B. V., Lur'e, I. S. (1988). Tehnologicheskiy kontrol' konditerskogo proizvodstva. Moscow: Pishhevaja Promyshlennost', 207–208.
GOST 5902-80. Metody opredeleniya stepeni izmel'cheniya i plotnosti poristyh izdeliy (2004). Moscow: IPK Izdatel'stvo standartov, 6.
Reotest: instrukciya po ekspluatacii (1978). GDR.
Kosoy, V. D., Vinogradov, Ya. I., Malyshev, A. D. (2005). Inzhenernaya reologiya biotekhnologicheskih sred. Sankt-Peterburg: GIORD, 648.
Zolotareva, L. A., Avetisyan, K. V. (2007). Strukturoobrazovateli i prochnostnye svoystva zheleynyh izdeliy. Khlibopekarska i kondyterska promyslovist Ukrainy, 4, 40–41.
Zakharchuk, V. H., Kundilovska, T. A., Haidukovych, H. Ye. (2016). Tekhnolohiya produktsiyi restorannoho hospodarstva. Odessa: ONEU, Atlant VOI SOIU, 479.
GOST 31986-2012. Uslugi obshhestvennogo pitaniya. Metod organolepticheskoy ocenki kachestva produkcii obshhestvennogo pitaniya (2014). Moscow: Standartinform, 15.
Copyright (c) 2019 Iryna Tsykhanovska, Victoria Yevlash, Alexandr Alexandrov, Barna Khamitova, Karyna Svidlo, Olesia Nechuiviter

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.