INVESTIGATION OF TECHNOLOGICAL PROPERTIES OF FOUR-TYPE TRITICALE SEED OF DIFFERENT FRACTIONS

  • Vitalii Liubych Uman National University of gardening, Ukraine
  • Volodymyr Novikov Uman National University of gardening, Ukraine
  • Iryna Polianetska Uman National University of gardening, Ukraine
  • Serhiy Usyk Uman National University of gardening, Ukraine
  • Vasyl Petrenko Institute of food resources of National Academy of agrarian sciences, Ukraine
  • Svitlana Khomenko The V. M. Remeslo Myronivka Institute of Wheat of National Academy of Agrarian Sciences of Ukraine, Ukraine
  • Victor Zorunko Odessa State agricultural experimental station of National Academy of Agrarian Sciences of Ukraine, Ukraine
  • Oleksandr Balabak Odessa State agricultural experimental station of National Academy of Agrarian Sciences of Ukraine, Ukraine
  • Valentyn Moskalets Institute of Horticulture of the National Academy of Agrarian Sciences, Ukraine
  • Tetiana Moskalets Institute of Horticulture of the National Academy of Agrarian Sciences, Ukraine
Keywords: triticale, technological properties of seed, mass of 1000 seeds, seed fractions

Abstract

Triticale is a promising agricultural crop. The increased content of protein, balanced by the amino acid composition, advantageously distinguishes triticale seed for peeled grains and food concentrates production. Seed cleaning is an important technological operation of food productions, but setting regimes of seed-cleaning equipment for processing triticale seed need specification today.

The aim of this work is to study geometric and physical characteristics of four-type triticale seed and elaboration of recommendations as to its cleaning and fractionating.

There was studied the fractional composition of four-type triticale seed. The comparative analysis of its length, width and thickness in samples of different sorts and fractions was realized. The dependence of geometric properties of triticale seed on sort is reliable. Fractionating reliably influences the change of the mass index of 1000 seeds, changing from 65,2 g to 25,8 g. The mass index of 1000 seeds essentially differs between studied sorts.

Such properties are inherent to seed fractions, obtained by a sieve of 3,2–20 mm and 3,0–20 mm, that are recommended to be called big seeds. Fractions, obtained by a sieve of 2,0–20 and 2,2–20 are analogously similar. Properties of the middle fraction, obtained by sieves of 2,4–20; 2,6–20; 2,8–20 essentially changed, depending on sort.

The elaborated recommendations may be used at choosing cleaning regimes for triticale seed on sieve and sieve-air separators.

Downloads

Download data is not yet available.

Author Biographies

Vitalii Liubych, Uman National University of gardening

Department of seed storage and processing technology

Volodymyr Novikov, Uman National University of gardening

Department of seed storage and processing technology

Iryna Polianetska, Uman National University of gardening

Department of genetics, plants' selection and biotechnology

Serhiy Usyk, Uman National University of gardening

Department of general agriculture

Vasyl Petrenko, Institute of food resources of National Academy of agrarian sciences

Laboratory of flour-grinding, peeled grain and bakery production

Victor Zorunko, Odessa State agricultural experimental station of National Academy of Agrarian Sciences of Ukraine

Department of plants' protection, genetics and selection

Oleksandr Balabak, Odessa State agricultural experimental station of National Academy of Agrarian Sciences of Ukraine

Sector of plants' genetics, selection and reproductive biology

Valentyn Moskalets, Institute of Horticulture of the National Academy of Agrarian Sciences

Selection-technological sector

Tetiana Moskalets, Institute of Horticulture of the National Academy of Agrarian Sciences

Selection-technological sector

References

Liubych, V. V., Novak, L. L., Voziian, V. V. (2018). Technological properties of winter triticale grain depending on the norms of nitrogen fertilizers. Journal of Uman National University of Horticulture, 92, 119–125.

Adonina, I. G., Orlovskaya, O. A., Tereshchenko, O. Y., Koren, L. V., Khotyleva, L. V., Shumny, V. K., Salina, E. A. (2011). Development of commercially valuable traits in hexaploid triticale lines with Aegilops introgressions as dependent on the genome composition. Russian Journal of Genetics, 47 (4), 453–461. doi: https://doi.org/10.1134/s1022795411040028

Salmanowicz, B., Langner, M., Wiśniewska, H., Apolinarska, B., Kwiatek, M., Błaszczyk, L. (2013). Molecular, Physicochemical and Rheological Characteristics of Introgressive Triticale/Triticum monococcum ssp. monococcum Lines with Wheat 1D/1A Chromosome Substitution. International Journal of Molecular Sciences, 14 (8), 15595–15614. doi: https://doi.org/10.3390/ijms140815595

Ittu, G., Saulescu, N., Ittu, M., Mustatea, P. (2014). Present and perspectives in Romanian triticale breeding program. Commun Agric Appl Biol Sci, 79 (4), 185–191.

Pattison, A. L., Appelbee, M., Trethowan, R. M. (2014). Characteristics of Modern Triticale Quality: Glutenin and Secalin Subunit Composition and Mixograph Properties. Journal of Agricultural and Food Chemistry, 62 (21), 4924–4931. doi: https://doi.org/10.1021/jf405138w

Del-Angel, A. R., Sotelo, A. (1982). Nutritive Value of Mixtures Using Chick-peas with Wheat, Triticale, Normal and Opaque-2 Corns. The Journal of Nutrition, 112 (8), 1474–1480. doi: https://doi.org/10.1093/jn/112.8.1474

Naik, H. R., Sekhon, K. S., Abbas Wani, A. (2010). Physicochemical and Dough-handling Characteristics of Indian Wheat and Triticale Cultivars. Food Science and Technology International, 16 (5), 371–379. doi: https://doi.org/10.1177/1082013210366880

Keese, C., Meyer, U., Rehage, J., Spilke, J., Boguhn, J., Breves, G., Dänicke, S. (2008). Ruminal fermentation patterns and parameters of the acid base metabolism in the urine as influenced by the proportion of concentrate in the ration of dairy cows with and without Fusariumtoxin-contaminated triticale. Archives of Animal Nutrition, 62 (4), 287–302. doi: https://doi.org/10.1080/17450390802066443

Zuber, T., Maurer, H. P., Möhring, J., Nautscher, N., Siegert, W., Rosenfelder, P., Rodehutscord, M. (2016). Variability in amino acid digestibility of triticale grain from diverse genotypes as studied in cecectomized laying hens. Poultry Science, 95 (12), 2861–2870. doi: https://doi.org/10.3382/ps/pew174

Haidai, H. S. (2012). Tekhnolohichni vlastyvosti zerna zalezhno vid rozmiru zernivky. Materialy Vseukrainskoi naukovoi konferentsiyi molodykh uchenykh. Uman, 183–185.

Haidai, H., Matvienko, N., Bobko, T. (2011). Zalezhnist pokaznykiv yakosti zerna vid dozy mineralnoho zhyvlennia ta rozmiru zernivky. Osnovy biolohichnoho roslynnytstva v suchasnomu zemlerobstvi, 9, 446.

Morhun, V. O., Voloshenko, O. S. (2012). Pidvyshchennia efektyvnosti pererobky zerna pshenytsi. Zb. nauk. prats Odeskoi NAKhT, 36, 25–29.

Еgorov, G. A., Petrenko, T. P. (1999). Tekhnologiya muki i krupy. Moscow: Izdatel'skiy kompleks, 336.

Vereshchynskyi, O. (2011). Chy potribno vyluchaty milke zerno pry provedenni sortovykh pomeliv pshenytsi. Hranenie i pererabotka zerna, 3, 20–21.

Dmytruk, Ye. A. (2010). Shliakhy ratsionalnoho vykorystannia zerna. Fraktsionuvannia zerna. Pohlyblena pererobka zerna. Yakist ta bezpeka zerna, nasinnia ta zernoproduktiv. Atestatsiya vyrobnycho-tekhnichnykh laboratoriy: Mizh. nauk.-tekhn. konf. Kyiv, 26.


👁 330
⬇ 235
Published
2019-06-14
How to Cite
Liubych, V., Novikov, V., Polianetska, I., Usyk, S., Petrenko, V., Khomenko, S., Zorunko, V., Balabak, O., Moskalets, V., & Moskalets, T. (2019). INVESTIGATION OF TECHNOLOGICAL PROPERTIES OF FOUR-TYPE TRITICALE SEED OF DIFFERENT FRACTIONS. EUREKA: Life Sciences, (3), 40-47. https://doi.org/10.21303/2504-5695.2019.00915
Section
Food Science and Technology