• Leonid Kaprelyants Odessa National Academy of Food Technologies
  • Liliia Pozhitkova Odessa National Academy of Food Technologies
  • Mykola Buzhylov Odessa National Academy of Food Technologies
Keywords: wheat bran, microstructure of wheat bran, fermentation, lactic acid bacteria, enzymatic hydrolyses, dietary fiber, bioactive compounds, antioxidant activity


Last time the food industry pays the great attention to questions, connected with changing existing technologies for raising the efficacy of the raw materials complex processing and increasing the output of high-quality products and food ingredients with a minimal amount of waste. Cereal crops are the most reach source of functional ingredients and main component in the human food ration. The technological process of cereal crops processing at enterprises is closely connected with creating a great number of secondary raw material resources and its further utilization.

For confirming the efficacy of using secondary products of grain processing as cheap raw material resources of dietary fiber and physiologically functional ingredients, there is characterized the accessibility of their biotransformation that gives a possibility to get biologically active substances of different chemical nature with a wide spectrum of physiological effects.

Secondary products of cereal crops processing (bran) are multi-component substrates, formed of different histological layers of wheat grains after comminution, consisted of (external pericarp, internal pericarp, grain coat, hyaline and aleurone layer of a grain coat).

Wheat bran is rich in dietary fiber, nutritive and phytochemical substances, that is why, it is most often used for feeding animals. But for today there are important proofs of using it in the food industry.

The development of new innovative technologies, modern achievements in microbiology and biotechnology have an important value for secondary products of grain processing, because they allow to conduct directed technological processes at the qualitatively new level that provides using soft regimes of vegetable raw materials processing, allowing to preserve natural biologically active substances and nutrients.

The modeling of the combined complex processing that includes enzymatic hydrolysis and fermentation by microorganisms improves technological, sensor and also nutritive and physiologically functional properties of wheat bran at the expanse of: bioavailability increase of phenol compounds, vitamins and minerals, assimilability of proteins and decrease of the content of anti-nutritive compounds.

Enzymatic preparations allow to use vegetable raw materials rationally, to intensify technological processes, in such a way increasing the output of biologically active substances and to widen the assortment of created products. The process of wheat bran formation results in increasing the nutritional value, enriching the biopolymeric complex with probiotic microorganisms and prebiotic substances.

Based on the structural peculiarities and multicomponent composition of wheat bran, presented and studied in the article, it has been established, that the use of the directed modification allows to get functional ingredients and products with set properties that influence the human health favorably. So, wheat bran must be used not only in agriculture as a cattle fodder, but also in the food industry.


Download data is not yet available.

Author Biographies

Leonid Kaprelyants, Odessa National Academy of Food Technologies

Department of Biochemistry, Microbiology and Physiology of Nutrition

Liliia Pozhitkova, Odessa National Academy of Food Technologies

Department of Biochemistry, Microbiology and Physiology of Nutrition

Mykola Buzhylov, Odessa National Academy of Food Technologies

Department of Biochemistry, Microbiology and Physiology of Nutrition


Peña, R. J. (2002). Wheat for bread and other foods. Bread wheat improvement and production. Food and Agriculture Organization of the United Nations. Rome, 483–542.

Dhiraj, B., Prabhasankar, P. (2013). Influence of Wheat-Milled Products and Their Additive Blends on Pasta Dough Rheological, Microstructure, and Product Quality Characteristics. International Journal of Food Science, 2013, 1–11. doi:

Sette, S., D’Addezio, L., Piccinelli, R., Hopkins, S., Le Donne, C., Ferrari, M. et. al. (2015). Intakes of whole grain in an Italian sample of children, adolescents and adults. European Journal of Nutrition, 56 (2), 521–533. doi:

Šramková, Z., Gregová, E., Šturdík, E. (2009). Chemical composition and nutritional quality of wheat grain. Acta Chimica Slovaca, 2 (1), 115–138.

Stevenson, L., Phillips, F., O’sullivan, K., Walton, J. (2012). Wheat bran: its composition and benefits to health, a European perspective. International Journal of Food Sciences and Nutrition, 63 (8), 1001–1013. doi:

Brouns, F., Hemery, Y., Price, R., Anson, N. M. (2012). Wheat Aleurone: Separation, Composition, Health Aspects, and Potential Food Use. Critical Reviews in Food Science and Nutrition, 52 (6), 553–568. doi:

Soliman, G. A. (2019). Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients, 11 (5), 1155. doi:

Shewry, P. R., Hey, S. J. (2015). The contribution of wheat to human diet and health. Food and Energy Security, 4 (3), 178–202. doi:

Anderson, J. W., Baird, P., Davis Jr, R. H., Ferreri, S., Knudtson, M., Koraym, A. et. al. (2009). Health benefits of dietary fiber. Nutrition Reviews, 67 (4), 188–205. doi:

Jenkins, D. J. A., Kendall, C. W. C., Augustin, L. S. A., Martini, M. C., Axelsen, M., Faulkner, D. et. al. (2002). Effect of Wheat Bran on Glycemic Control and Risk Factors for Cardiovascular Disease in Type 2 Diabetes. Diabetes Care, 25 (9), 1522–1528. doi:

Kaprelyants, L. V., Petrosyants, A. P. (2011). Likuval'no-profilaktychni vlastyvosti kharchovykh produktiv ta osnovy diyetolohiyi. Odessa: Druk, 269.

Nakaz MOZ. Ukrainy «Pro zatverdzhennia Norm fiziolohichnykh potreb naselennia Ukrainy v osnovnykh kharchovykh rechovynakh ta enerhiyi. No. 272 vid 18.11.99. Available at:

Bartłomiej, S., Justyna, R.-K., Ewa, N. (2012). Bioactive compounds in cereal grains – occurrence, structure, technological significance and nutritional benefits – a review. Food Science and Technology International, 18 (6), 559–568. doi:

Liukkonen, K.-H., Katina, K., Wilhelmsson, A., Myllymaki, O., Lampi, A.-M., Kariluoto, S. et. al. (2003). Process-induced changes on bioactive compounds in whole grain rye. Proceedings of the Nutrition Society, 62 (1), 117–122. doi:

Kamal-Eldin, A., Lærke, H. N., Knudsen, K.-E. B., Lampi, A.-M., Piironen, V., Adlercreutz, H. et. al. (2009). Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries. Food & Nutrition Research, 53 (1), 1912. doi:

Antoine, C., Peyron, S., Mabille, F., Lapierre, C., Bouchet, B., Abecassis, J., Rouau, X. (2003). Individual Contribution of Grain Outer Layers and Their Cell Wall Structure to the Mechanical Properties of Wheat Bran. Journal of Agricultural and Food Chemistry, 51 (7), 2026–2033. doi:

Gartaula, G., Dhital, S., Netzel, G., Flanagan, B. M., Yakubov, G. E., Beahan, C. T. et. al. (2018). Quantitative structural organisation model for wheat endosperm cell walls: Cellulose as an important constituent. Carbohydrate Polymers, 196, 199–208. doi:

Bacic, A., Stone, B. (1981). Isolation and Ultrastructure of Aleurone Cell Walls From Wheat and Barley. Functional Plant Biology, 8 (5), 453. doi:

Prückler, M., Siebenhandl-Ehn, S., Apprich, S., Höltinger, S., Haas, C., Schmid, E., Kneifel, W. (2014). Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT - Food Science and Technology, 56 (2), 211–221. doi:

Kaprelyants, L., Yegorova, A., Trufkati, L., Pozhitkova, L. (2019). Functional foods: prospects in Ukraine. Food Science and Technology, 13 (2). doi:

Onipe, O. O., Jideani, A. I. O., Beswa, D. (2015). Composition and functionality of wheat bran and its application in some cereal food products. International Journal of Food Science & Technology, 50 (12), 2509–2518. doi:

Katina, K., Juvonen, R., Laitila, A., Flander, L., Nordlund, E., Kariluoto, S. et. al. (2012). Fermented Wheat Bran as a Functional Ingredient in Baking. Cereal Chemistry Journal, 89 (2), 126–134. doi:

Kaprelyants, L. V., Iorgachova, K. H. (2003). Funktsionalʹni produkty. Odessa: Druk, 312.

Weststrate, J. A., van Poppel, G., Verschuren, P. M. (2002). Functional foods, trends and future. British Journal of Nutrition, 88 (S2), S233–S235. doi:

Kaprelyants, L., Zhurlova, O. (2017). Technology of wheat and rye bran biotransformation into functional ingredients. International Food Research Journal, 24 (5), 1975–1979.

Oseiko, M., Shevchyk, V., Romanovska, T. (2017). Functional products and preparations in the systemic concept of health. Ukrainian Food Journal, 6 (4), 661–673. doi:

Adom, K. K., Sorrells, M. E., Liu, R. H. (2005). Phytochemicals and Antioxidant Activity of Milled Fractions of Different Wheat Varieties. Journal of Agricultural and Food Chemistry, 53 (6), 2297–2306. doi:

Antoine, C., Peyron, S., Lullien-Pellerin, V., Abecassis, J., Rouau, X. (2004). Wheat bran tissue fractionation using biochemical markers. Journal of Cereal Science, 39 (3), 387–393. doi:

Zhu, K., Huang, S., Peng, W., Qian, H., Zhou, H. (2010). Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Research International, 43 (4), 943–948. doi:

Noort, M. W. J., van Haaster, D., Hemery, Y., Schols, H. A., Hamer, R. J. (2010). The effect of particle size of wheat bran fractions on bread quality – Evidence for fibre–protein interactions. Journal of Cereal Science, 52 (1), 59–64. doi:

Zhou, K., Su, L., Yu, L. (Lucy). (2004). Phytochemicals and Antioxidant Properties in Wheat Bran. Journal of Agricultural and Food Chemistry, 52 (20), 6108–6114. doi:

Liangli, L. Y., Tsao, R., Shahidi, F. (Eds.) (2012). Cereals and pulses: nutraceutical properties and health benefits. John Wiley & Sons, 328.

Caprez, A., Arrigoni, E., Amadò, R., Neukom, H. (1986). Influence of different types of thermal treatment on the chemical composition and physical properties of wheat bran. Journal of Cereal Science, 4 (3), 233–239. doi:

Prückler, M., Siebenhandl-Ehn, S., Apprich, S., Höltinger, S., Haas, C., Schmid, E., Kneifel, W. (2014). Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT - Food Science and Technology, 56 (2), 211–221. doi:

Hossain, K., Ulven, C., Glover, K., Ghavami, F., Simsek, S., Alamri, M. S., Mergoum, M. (2013). Interdependence of Cultivar and Environment on Fiber Composition in Wheat Bran. Australian journal of crop science, 7 (4), 525–531.

Onyeneho, S. N., Hettiarachchy, N. S. (1992). Antioxidant activity of durum wheat bran. Journal of Agricultural and Food Chemistry, 40 (9), 1496–1500. doi:

Esposito, F., Arlotti, G., Maria Bonifati, A., Napolitano, A., Vitale, D., Fogliano, V. (2005). Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Research International, 38 (10), 1167–1173. doi:

Andersson, A. A. M., Andersson, R., Piironen, V., Lampi, A.-M., Nyström, L., Boros, D. et. al. (2013). Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity screen. Food Chemistry, 136 (3-4), 1243–1248. doi:

Weegels, P. (Eds.) (2009). Consumer Driven Cereal Innovation: Where Science Meets Industry. Elsevier.

Wu, P., Tian, J.-C., Walker, C. E. (Chuck), Wang, F.-C. (2009). Determination of phytic acid in cereals - a brief review. International Journal of Food Science & Technology, 44 (9), 1671–1676. doi:

Majzoobi, M., Pashangeh, S., Farahnaky, A., Eskandari, M. H., Jamalian, J. (2012). Effect of particle size reduction, hydrothermal and fermentation treatments on phytic acid content and some physicochemical properties of wheat bran. Journal of Food Science and Technology, 51 (10), 2755–2761. doi:

Febles, C. I., Arias, A., Hardisson, A., Rodrı́guez-Alvarez, C., Sierra, A. (2002). Phytic Acid Level in Wheat Flours. Journal of Cereal Science, 36 (1), 19–23. doi:

Oatway, L., Vasanthan, T., Helm, J. H. (2001). Phytic Acid. Food Reviews International, 17 (4), 419–431. doi:

Bilgiçli, N., İbanoğlu, Ş. (2007). Effect of wheat germ and wheat bran on the fermentation activity, phytic acid content and colour of tarhana, a wheat flour–yoghurt mixture. Journal of Food Engineering, 78 (2), 681–686. doi:

Nissar, J., Ahad, T., Naik, H. R., Hussain, S. Z. (2017). A review phytic acid: As antinutrient or nutraceutical. Journal of Pharmacognosy and Phytochemistry, 6 (6), 1554–1560.

Schieber, A., Stintzing, F. C., Carle, R. (2001). By-products of plant food processing as a source of functional compounds – recent developments. Trends in Food Science & Technology, 12 (11), 401–413. doi:

Javed, M. M., Zahoor, S., Shafaat, S., Mehmooda, I., Gul, A., Rasheed, H., Aftab, M. N. (2012). Wheat bran as a brown gold: Nutritious value and its biotechnological applications. African Journal of Microbiology Research, 6 (4), 724–733. Available at:

Lattimer, J. M., Haub, M. D. (2010). Effects of Dietary Fiber and Its Components on Metabolic Health. Nutrients, 2 (12), 1266–1289. doi:

Buzhylov, M. G., Kaprelyants, L. V., Pozhitkova, L. G. (2019). Estimation of fractions of wheat cutting as biotechnological processing object. Scientific Works, 82 (2), 55–61. doi:

Sidhu, J. S., Kabir, Y., Huffman, F. G. (2007). Functional Foods from Cereal Grains. International Journal of Food Properties, 10 (2), 231–244. doi:

Fardet, A. (2010). New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutrition Research Reviews, 23(1), 65–134. doi:

Maheshwari, G., Sowrirajan, S., Joseph, B. (2017). Extraction and Isolation of β-Glucan from Grain Sources-A Review. Journal of Food Science, 82 (7), 1535–1545. doi:

Coda, R., Katina, K., Rizzello, C. G. (2015). Bran bioprocessing for enhanced functional properties. Current Opinion in Food Science, 1, 50–55. doi:

Arte, E., Rizzello, C. G., Verni, M., Nordlund, E., Katina, K., Coda, R. (2015). Impact of Enzymatic and Microbial Bioprocessing on Protein Modification and Nutritional Properties of Wheat Bran. Journal of Agricultural and Food Chemistry, 63 (39), 8685–8693. doi:

Verni, M., Rizzello, C. G., Coda, R. (2019). Fermentation Biotechnology Applied to Cereal Industry By-Products: Nutritional and Functional Insights. Frontiers in Nutrition, 6. doi:

Samaan, R. A. (2017). Dietary Fiber for the Prevention of Cardiovascular Disease: Fiber’s Interaction between Gut Micoflora, Sugar Metabolism, Weight Control and Cardiovascular Health. Academic Press, 170.

Dreher, M. L. (2018). Dietary Patterns, Foods and Fiber in Irritable Bowel Syndrome and Diverticular Disease. Dietary Patterns and Whole Plant Foods in Aging and Disease, 165–192. doi:

Masisi, K., Beta, T., Moghadasian, M. H. (2016). Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chemistry, 196, 90–97. doi:

Deroover, L., Tie, Y., Verspreet, J., Courtin, C. M., Verbeke, K. (2019). Modifying wheat bran to improve its health benefits. Critical Reviews in Food Science and Nutrition, 1–19. doi:

Chakraborty, M., Budhwar, D. S. (2019). Critical Analysis of Wheat Bran as Therapeutic Source. International Journal of Trend in Scientific Research and Development, 3 (3), 296–303. doi:

Costabile, A., Klinder, A., Fava, F., Napolitano, A., Fogliano, V., Leonard, C. et. al. (2007). Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. British Journal of Nutrition, 99 (1), 110–120. doi:

Carlson, J. J., Eisenmann, J. C., Norman, G. J., Ortiz, K. A., Young, P. C. (2011). Dietary Fiber and Nutrient Density Are Inversely Associated with the Metabolic Syndrome in US Adolescents. Journal of the American Dietetic Association, 111 (11), 1688–1695. doi:

Gibson, G. R., Roberfroid, M. B. (1995). Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition, 125 (6), 1401–1412. doi:

Joshi, D., Roy, S., Banerjee, S. (2018). Prebiotics. Natural Products and Drug Discovery, 507–523. doi:

Gunenc, A., Alswiti, C., Hosseinian, F. (2017). Wheat Bran Dietary Fiber: Promising Source of Prebiotics with Antioxidant Potential. Journal of Food Research, 6 (2), 1. doi:

Luithui, Y., Baghya Nisha, R., Meera, M. S. (2018). Cereal by-products as an important functional ingredient: effect of processing. Journal of Food Science and Technology, 56 (1), 1–11. doi:

Zhao, H.-M., Guo, X.-N., Zhu, K.-X. (2017). Impact of solid state fermentation on nutritional, physical and flavor properties of wheat bran. Food Chemistry, 217, 28–36. doi:

Coda, R., Rizzello, C. G., Curiel, J. A., Poutanen, K., Katina, K. (2014). Effect of bioprocessing and particle size on the nutritional properties of wheat bran fractions. Innovative Food Science & Emerging Technologies, 25, 19–27. doi:

Nordlund, E., Katina, K., Aura, A.-M., Poutanen, K. (2013). Changes in bran structure by bioprocessing with enzymes and yeast modifies the in vitro digestibility and fermentability of bran protein and dietary fibre complex. Journal of Cereal Science, 58 (1), 200–208. doi:

Sibakov, J., Lehtinen, P., Poutanen, K. (2013). Cereal brans as dietary fibre ingredients. Fibre-Rich and Wholegrain Foods, 170–192. doi:

Coda, R., Katina, K., Rizzello, C. G. (2015). Bran bioprocessing for enhanced functional properties. Current Opinion in Food Science, 1, 50–55. doi:

Rezaei, S., Najafi, M. A., Haddadi, T. (2019). Effect of fermentation process, wheat bran size and replacement level on some characteristics of wheat bran, dough, and high-fiber Tafton bread. Journal of Cereal Science, 85, 56–61. doi:

Arte, E., Katina, K., Holopainen-Mantila, U., Nordlund, E. (2016). Effect of Hydrolyzing Enzymes on Wheat Bran Cell Wall Integrity and Protein Solubility. Cereal Chemistry Journal, 93 (2), 162–171. doi:

Lamsal, B. P., Faubion, J. M. (2009). The Beneficial Use of Cereal and Cereal Components in Probiotic Foods. Food Reviews International, 25 (2), 103–114. doi:

Zhang, H. W., Yang, M. D., Fan, X. F. (2011). Study on Modification of Dietary Fiber from Wheat Bran. Advanced Materials Research, 183-185, 1268–1272. doi:

Laddomada, B., Caretto, S., Mita, G. (2015). Wheat Bran Phenolic Acids: Bioavailability and Stability in Whole Wheat-Based Foods. Molecules, 20 (9), 15666–15685. doi:

Kaprelyants, L. V., Zhurlova, E. D., & Buzhilov, N. G. (2017)Prospects for the use of grain raw materials in the production of functoinal products. Grain Products and Mixed Fodder’s, 18 (4), 18–26. doi:

Wang, J., Sun, B., Cao, Y., Wang, C. (2010). In vitro fermentation of xylooligosaccharides from wheat bran insoluble dietary fiber by Bifidobacteria. Carbohydrate Polymers, 82 (2), 419–423. doi:

Zalán, Z., Hegyi, F., Szabó, E. E., Maczó, A., Baka, E., Du, M. et. al. (2015). Bran fermentation with lactobacillus strains to develop a functional ingredient for sourdough production. International Journal of Nutrition and Food Sciences, 4 (4), 409–419. doi:

Hugenschmidt, S., Miescher Schwenninger, S., Lacroix, C. (2010). No. PCT/CH2010/000006. Process for the preparation of a fermentation broth. Available at:

Hugenschmidt, S., Schwenninger, S. M., Lacroix, C. (2011). Concurrent high production of natural folate and vitamin B12 using a co-culture process with Lactobacillus plantarum SM39 and Propionibacterium freudenreichii DF13. Process Biochemistry, 46 (5), 1063–1070. doi:

Krupytska, L., Kaprelyants, L., Trufkti, L. (2017). Investigation of the antagonistic activity of secondary metabolites of propionic acid bacteria. Food Science and Technology, 11 (2). doi:

Krupytska, L., Kaprelyants, L., Trufkati, L., Velichko, T., Kirilov, V. (2018). Technology of Producing Symbiotic Biologically Active Additive. Food Science and Technology, 12 (2). doi:

Kaprelyants, L., Zhurlova, O., Shpyrko, T., Pozhitkova, L. (2017). Xylooligosaccharides from agricultural by-products: characterisation, production and physiological effects. Food Science and Technology, 11 (3). doi:

Chamlagain, B., Sugito, T. A., Deptula, P., Edelmann, M., Kariluoto, S., Varmanen, P., Piironen, V. (2018). In situ production of active vitamin B12 in cereal matrices using Propionibacterium freudenreichii. Food Science & Nutrition, 6 (1), 67–76. doi:

Boz, H. (2015). Ferulic acid in cereals – a review. Czech Journal of Food Sciences, 33 (1), 1–7. doi:

Deng, H., Jia, P., Jiang, J., Bai, Y., Fan, T.-P., Zheng, X., Cai, Y. (2019). Expression and characterisation of feruloyl esterases from Lactobacillus fermentum JN248 and release of ferulic acid from wheat bran. International Journal of Biological Macromolecules, 138, 272–277. doi:

Zhurlova, O., Kaprelyants, L. (2013). Fitokomponenti zernovogo siriya: stroenie, svoystva, primenenie. Harchova nauka і tehnologiya, 4, 3–7.

Guo, J., Bian, Y.-Y., Zhu, K.-X., Guo, X.-N., Peng, W., Zhou, H.-M. (2015). Activation of Endogenous Phytase and Degradation of Phytate in Wheat Bran. Journal of Agricultural and Food Chemistry, 63 (4), 1082–1087. doi:

Nuobariene, L., Hansen, Å. S., Arneborg, N. (2012). Isolation and identification of phytase-active yeasts from sourdoughs. LWT - Food Science and Technology, 48 (2), 190–196. doi:

McKay, A. M. (1992). Hydrolysis of vicine and convicine from fababeans by microbial β-glucosidase enzymes. Journal of Applied Bacteriology, 72 (6), 475–478. doi:

Lu, Z. X., Walker, K. Z., Muir, J. G., Mascara, T., O’Dea, K. (2000). Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects. The American Journal of Clinical Nutrition, 71 (5), 1123–1128. doi:

👁 741
⬇ 308
How to Cite
Food Science and Technology