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1. Introduction
1. 1. The object of the research
Heat shock proteins (HSP70 and HSP90α) expression during experimental toxic optical 

neuropathy induced by Cr(VI).

1. 2. Problem description
Intoxication lesions of the optic nerve (toxic optic neuropathy, TON) most often occur under 

the influence of exogenous factors [1, 2], including heavy metals [3]. As the process progresses, 
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Intoxication lesions of the optic nerve (toxic optic neuropathy, TON) most often occur un-
der the influence of exogenous factors, including heavy metals. Сell survival under stress 
have involves heat shock proteins (HSPs).
The aim of the research. To assess the optic nerve’s immunoreactivity to heat shock pro-
teins of the HSP70 and HSP90α families and reveal its relationship with the severity of 
morphological changes in toxic optic neuropathy caused by Cr (VI). 
Materials and methods. The study was conducted on 48 mature male rats. The experi-
mental groups were given to drink water with Cr(VI) for 20, 40 and 60 days. This type 
of water is typical for the water basins in the northern districts of the Sumy region. Optic 
nerves сhanges under the influence of Cr(VI) have investigated by the morphometric meth-
od. Neuroglial cells and capillary endothelial cells were assessed by immunohistochemis-
try by HSP70α and HSP90 expression for intensity and spatial distribution.
Results. The data analysis revealed that Cr (VI) has a neurotoxic effect on the optic nerve 
with the development of edema, which is manifested by the thickening of nerve fibers. 
The dynamics of HSP70 immunoexpression in the endothelium of the optic nerve capil-
laries of rats on 20 and 40 experimental days was characterized by stable values and was 
1.5 times higher than the control. The maximum number of positively stained cells for 
the HSP70 marker was detected in endothelial cells of the microvasculature for 60 days – 
82.44±12.42 %. HSP70 levels in neuroglia cells of optic nerve have decreased on day 40 
(55.66±11.56%, p=0.05) and lower than the control (70.44±4.81 %.) group. Optic nerve cap-
illaries was highest immunoactivity on HSP90 in group II endothelial cells – 51.22±14.57 % 
(p=0.05). The activity of HSP90α protein in optic neuroglia cells was characterized by a 
gradual increase in the duration of the experiment and was higher by 12.4 % in experimen-
tal group III (81.77±21.67 %) compared with control (71.66±4.95 %).
Conclusions. Our study provides an insight into the significant difference in the immu-
noreactivity of heat shock proteins of the HSP70 and HSP90α families in neuroglia and 
endothelial cells of the optic nerve capillaries under the influence of Cr(VI).
The results obtained suggest that Cr (VI) has a neurotoxic effect on the optic nerve with 
the development of edema, which is manifested by the thickening of nerve fibers. A com-
parison of the dynamics of the development of the dystrophic process in the optic nerve 
with the results of the immunohistochemical analysis showed, that an increase in the thick-
ness of nerve fibers is accompanied by an increase in immunoreactive neuroglial cells 
(HSP90α) and endothelial cells (HSP70).
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develop acute or chronic progressive death of retinal ganglion cells and their axons, which leads to 
morphological changes.

Over the past few decades, emissions of pollutants into the environment have increased 
significantly due to rapid industrialization, urbanization, and overuse of agricultural fertiliz-
ers [4, 5]. One of the 14 most toxic heavy metals that pollute the environment, according to the 
Environmental Protection Agency India, is hexavalent chromium (Cr (VI)), due to its wide-
spread use in the industry [6]. The lack of proper control over the disposal of Cr (VI) waste 
leads to an increase in the level of Cr (VI) in soil, water, air, polluting the environment [6, 7]. 
The most common routes of exposure to chromium through these media are ingestion, in-
halation, and dermal contact with soil, water, or particulates in the air contaminated with  
chromium.

Together with cobalt, hexavalent chromium compounds are widely used in medicine to cre-
ate metal components of endoprostheses. A significant disadvantage of these prostheses is the 
formation of submicroscopic friction products [8, 9], toxic to the body, due to the release of heavy 
metal ions, particularly cobalt and chromium [10], due to implant wear and corrosion [11, 12]. A 
number of works carried out worldwide speak about the pathological influence of ions of cobalt 
and chromium on an organism [13, 14]. Of interest are ophthalmic complications, of which, to date, 
only isolated cases have been published in the medical literature [15, 16]. According to the Gar-
cia M. D. and others, the Cr(VI) toxic role have been remains unclear [17].

Data from the literature do not provide a complete answer to the question of the points of 
application and the main mechanisms of development of disorders in the optic nerve due to the 
entry of hexavalent chromium into the body.

1. 3. Suggested solution to the problem 
Resisting apoptosis is unthinkable without heat shock proteins (HSPs) due to their partic-

ipation in a wide range of stress conditions, including pollution of the environment with heavy 
metals [18, 19]. The most studied of them are ATP-dependent chaperones with molecular weights 
from 40 to 105 kDa. These include the well-known chaperones of the 70 and 90 kDa families. The 
main functions of folding, refolding, elimination of irreversibly denatured protein conglomerates, 
or accompaniment into lysosomes (chaperone function for other proteins) to ensure homeostasis, 
growth processes and cell differentiation [20, 21].

In the intact retina of amphibians, the expression of HSP70 was observed mainly in the 
outer layers of the retina, and HSP90 – in the inner, mostly in Mueller cells and optic nerve, while 
ensuring the adaptive stability of its intracellular structures [22]. On immunohistochemical, HSP70 
is almost not expressed in neurons, but Tytell M. and co-authors first found that this polypeptide 
is secreted by neuroglia cells and transported to nerve axons, thereby performing a cytoprotective 
function, being in adjacent cells [23]. 

The main aim of the work. To assess the optic nerve’s immunoreactivity to heat shock 
proteins of the HSP70 and HSP90α families and reveal its relationship with the severity of morpho-
logical changes in toxic optic neuropathy caused by Cr (VI).

2. Materials and methods
The rats have been kept in vivarium conditions from February to March 2018 (the vivarium 

of Medical Institute of Sumy State University). The study was carried out on white, unpedigreed 
male rats weighing 180–200 g at four months (n=48). The conditions of the Declaration of Helsinki 
(General Assembly of the World Medical Association, 2008), norms and principles of the European 
Convention for the Protection of Vertebrate Animals used for research and other scientific purpos-
es were strictly observed.

2. 1. Experimental procedures
Toxic optical neuropathy in animals was simulated by adding K2Cr2O7 to ordinary drinking 

water at a dose of 0.02 mol/l, which is most typical for Ukraine’s contaminated regions.
For studying the dynamics of changes in the optic nerve, the experimental animals were 

divided into three groups, depending on the duration of taking ordinary water enriched with an in-
creased concentration of Cr (VI). – Group I (n=8) – 20 days from the beginning of the experiment, 
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Group II (n=8) – 40 days and Group III (n=8) – 60 days, respectively. Each experimental group 
contained 8 control rats that drink plain water.

After the experiment’s expiry, the animals were decapitated under ether anesthesia and their 
eyes were enucleated.

For histomorphometric examination of the optic nerve, laboratory rats were placed in a 
vessel where the organ was fixed in a 10 % buffered solution of neutral formalin for 24 hours. 
Then dehydration of the organ was performed. On a rotary microtome, serial paraffin sections of 
the optic nerve 5×10–6 m thick were obtained, which were placed on a glass slide and stained with 
hematoxylin and eosin. 

The obtained preparations were examined, photographed and measured using a micro-
scope “Carl Zeiss Primo Star” (Germany) (binoculars ×10, lenses ×10, ×40) with a digital camera 
“Zeiss AxioCam ERC 5s” (Germany) and software package output image system and calculation 
of “ZEN 2 (blue edition)” (Germany).

Morphometric measurements were performed using the Digimazer program. All micro-
metric indicators are presented in units of length according to the International System of Units – 
10−6 m (μm). 

For immunohistochemical study, truncated serial samples of the optic nerve were applied to 
glasses with high adhesiveness SuperFrost (Thermo Scientific, USA). The slides together with the 
material were placed in a thermostat, where they were dried at 37 °C for 18 hours. The obtained 
samples were subjected to dehydration after dewaxing. Unmasking was performed in citrate buffer 
(pH 6.0) at a temperature of 95–98 °C. The UltraVision Quanto Detection System HRP Polymer 
(Thermo scientific, USA) was used to visualize the primary antibodies. Blocking of endogenous 
peroxidase was performed with 3 % hydrogen peroxide solution. As a chromogen used diami-
nobenzidine (Thermo Scientific, USA). After the immunohistochemical reaction, sections were 
stained with Mayer’s hematoxylin for better differentiation of tissue structures. Branches of the 
optic nerve were processed using polyclonal antibodies in a 1:200 dilution to HSP90α and Hsp70 
protein (Thermo Scientific and Abcam, USA). 

Evaluation of the immunohistochemical reaction results was performed by calculating the 
area of expression (the ratio of the area of immunopositive cells to the total area of all cells expressed 
as a percentage) of cell elements. The reaction was considered positive in the presence of positively 
stained cells more than 1 % in 10 fields of view at a magnification of the microscope ×400. 

The images were captured by a computer-assisted digital camera, “Zeiss AxioCam ERс 5s”, 
connected to the microscope.

All statistical analyses were performed using the Statistical Package for Social Science program 
(SPSS for Windows, version 15.0, SPSS Inc., Chicago, IL, USA). Determining the reliability of differ-
ences was performed using Student’s t-test (t). The value of P < 0.05 was considered as significant.

3. Results
The results of the immunohistochemical examination of optic nerve samples of experimen-

tal rats of all groups showed different expression of HSP70 (Fig. 1) and HSP90α (Fig. 2) in neu-
roglia cells and capillary endothelial cells depending on the duration of the experiment (Table 1).

Table 1
The content of HSP70 and HSP90 proteins in neuroglia and endothelial cells of the optic nerve capillaries of 
experimental animals under the influence of hexavalent chromium (Cr (VI)), %, (M±m; n=8)

Animal groups Type of cells HSP70 HSP90α The size of the nerve fiber, μm

Control
Endothelial cells 16.11±12.93 15.55±11.57

10.4±2.1
Neuroglia 70.44±4.81 71.66±4.95

Group I 
(20 days)

Endothelial cells 25.33±12.49 12.77±8.83
11.3±3.2

Neuroglia 65.88±10.36 76.33±10.80
Group II 
(40 days)

Endothelial cells 24.44±11.57 51.22±14.57*
13.4±2.1

Neuroglia 55.66±11.56* 79.11±20.41
Group III 
(60 days)

Endothelial cells 82.44±12.42 18.33±12.93
15.7±1.3

Neuroglia 79.66±17.22 81.77±21.67

Note: *– statistical significance was set at p=0.05
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The control group of rats had a small number of HSP70 and HSP90α positive endothelial 
cells in the capillaries; their number was statistically insignificant. Simultaneously, in the optic 
neuroglia cells observed a high level of positive cells HSP70, HSP90α at p<0.05.

The dynamics of HSP70 immunoexpression in the endothelium of the optic nerve capil-
laries of rats of I and II experimental groups was characterized by stable values and was 1.5 times 
higher than the control. The maximum number of positively stained cells for the HSP70 marker 
was detected in endothelial cells of the microvasculature for 60 days (82.44±12.42 %), which 
was regarded as a strongly positive reaction. Optic nerve neuroglia cells of all study groups 
expressed HSP70 in almost the same amount according to the control, except for the experi-
mental group II, where this protein’s activity was equal to – 55.66±11.56 % and was lower than 
the control – 70.44±4.81 %.

Fig. 1. Longitudinal section of the intracranial optic nerve of rats exposed to hexavalent 
chromium (Cr (VI)) at different time intervals. Immunohistochemical study of HSP70 

expression: magnification ×400: A – Control group: 1 – astrocytes; 2 – endothelium of the 
capillaries of the optic nerve; B – I experimental group (20 days): 3 – HSP70 – negative 

astrocytes; 4 – capillary endothelium with moderate expression of HSP70;  
5 – HSP70 – positive cytoplasmic reaction of astrocytes; C – II experimental group (40 days): 

6 – capillary endothelium with moderate expression of HSP70; 7 – HSP70 – positive 
cytoplasmic reaction of astrocytes; 8 – HSP70 negative astrocytes; D – III experimental 

group (60 days): 9 – capillary endothelium with moderate expression of HSP70;  
10 – HSP70 positive cytoplasmic reaction of astrocytes 

Regarding the immunohistochemical activity of HSP90α in the endothelial cells 
of the optic nerve capillaries, it was highest in the II experimental group and was equal to 
51.22±14.57 %, followed by a sharp decrease to 18.33±12.93 % in the III group of the study and 
almost approaching it to the level of control – 15.55±11.57 % at p<0.05. The activity of HSP90α 
protein in optic neuroglia cells was characterized by a gradual increase in the duration of the 
experiment and was higher by 12, 4 % in experimental group III (81.77±21.67 %) compared 
with control (71.66±4.95 %).

The results of morphometric analysis indicate the presence of edema of the optic nerve, 
which is reflected in an increase in the thickness of nerve fibers (Table 1). In some parts of the op-
tic nerve revealed the phenomena of focal stratification with the phenomena of precellular edema.

As a result of the correlation analysis, we found an average positive relationship be-
tween the thickness of the optic nerve fiber and the expression of HSP70 in capillary endothe-
liocytes – r=0.88, at p=0.01. Also, a strong positive correlation was found between HSP90α in 
neuroglial cells and the thickness of the nerve fiber – r=0.94, at p=0.05.
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Fig. 2. Longitudinal section of the intracranial optic nerve of rats exposed to hexavalent chromium (Cr 
(VI)) at different time intervals. Immunohistochemical study of HSP90α expression: magnification 

×400. A – Control group: 1 – capillary endothelium with weak expression of HSP90α;  
2 – HSP90α – positive cytoplasmic reaction of astrocytes; B – I experimental group (20 days): 

3 – endothelial reaction of HSP90α; 4 – positive cytoplasmic and nuclear reaction of HSP90α of 
astrocytes; C – II experimental group (40 days): 5 – significant endothelial expression of HSP90α in 

capillaries; 6 – positive cytoplasmic, and nuclear reaction of HSP90α astrocytes; D – III experimental 
group (60 days): 7 – endothelial expression of HSP90α with dyscirculatory changes; 8 – positive 

cytoplasmic and nuclear reaction of HSP90α astrocytes against edematous changes

4. Discussion
For the first time, our study describes the features of the immunoexpression of heat shock 

proteins of the families: HSP70 and HSP90α in optic neuropathy associated with Cr (VI).
Some researchers believe that oxidative stress with the formation of ROS and activation of 

apoptosis resulting from mitochondrial dysfunction is a key link in the degeneration of retinal gan-
glion cells and their axons in the optic nerve [24, 25]. According to the literature, Cr (VI) enhances 
the accumulation of ROS by blocking complex I of the mitochondrial respiratory chain [26], and 
also reduces the activity of antioxidant enzymes [27]. Cr (VI), like other cationic metals, penetrates 
the outer mitochondrial membrane through the mechanism of molecular mimicry [28, 29]. Due 
to the high content of lipids with polyunsaturated fatty acids, brain mitochondria membranes are 
more sensitive to free radical oxidation under pathological conditions [30].

Heat shock proteins HSP70/HSP90 resist apoptosis, which in the early stages are able to 
reduce the consequences of free radical damage to mitochondrial membranes. It is HSP70, and 
according to other data, HSP90 [31], binds to Apaf-1, blocking the formation of the Apaf-1 – cy-
tochrome С complex in the cytoplasm and disrupting the Apaf-1 bond with procaspase-9, that is, 
disrupting the very process of apoptosome formation [32]. It should be recalled that ROS overpro-
duction promotes activation of the internal molecular pathway of cell apoptosis, which is regulated 
in mitochondria [33]. Activation of the internal pathway of apoptosis leads to an increase in the per-
meability of the mitochondrial membrane due to the opening of the pores and the release of cyto-
chrome C into the cytoplasm, which binds to the activating factor of apoptotic protease – (Apaf-1), 
which leads to the formation of an apoptosome. Which, in turn, mediates conformational changes 
and activation of the initiator caspase – 9. As a result, activated caspase – 9 triggers the caspase 
cascade of programmed cell death via procaspases 3 and 7 [34]. 

In our study, we observed a decrease in the chaperone activity of HSP70 in optic neuroglia 
cells already in experimental group I. These results can be partially explained by previous studies, 
which claim that Cr (VI) activates caspase-3, thereby inducing ROS-dependent decreases in HSP70 
and HSP90 [26]. However, as can be seen from our experimental results, the expression of HSP90 
in glial cells, on the contrary, moderately increased and reached a peak in experimental group III, 
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which only partially coincides with previous studies. A simple interpretation of this is that overex-
pression of heat shock proteins is part of the cellular stress response and is mainly caused by the 
heat shock factor (HSF) [35]. Under non-stress conditions, HSF-1 is found in the cytoplasm as an 
inactive monomer in a complex with HSP90. When a cell is exposed to stress, HSF-1 trimerization 
occurs, followed by its entry into the nucleus, where it interacts with transcription elements and 
triggers the process of HSP 90 gene expression [36]. At the same time, the level of other heat shock 
proteins, including HSP70, remains low. This fact we can explain as the competition of HSPs for 
binding to HSF-1. In support of this, Fei Dou and coauthors [37] found increased expression of 
Hsp70 in the primary culture of neurons in the rat embryonic brain (E17), upon administration of 
an inhibitor of HSP 90, explaining this by the release of heat shock factor 1 (HSF1) from the com-
plex with Hsp90 [38]. Termination of the harmful stimulus leads to rapid deactivation of HSF-1 
and return to an inactive form. And in general, the described changes confirm the mechanism of 
autoregulation of heat shock protein synthesis according to the feedback principle [39].

In addition, the protective mechanism of HSP90α is also associated with the activation of 
cellular signalling pathways for key proteins for which it is a chaperone [40]. Induction of HSP90α 
has been reported to increase cell survival under oxidative stress caused by pollutants, incl. and 
heavy metals by activating signalling pathways such as JAK-STAT, ERK 1/2, PI3K/Akt, Bcl-2 and 
NF-κB [41]. Activated MAP kinase, associated with the trk downstream signalling cascade, was 
found to coimmunoprecipitated with optic nerve HSP90, suggesting that HSP90 may be utilized in 
retrograde transport of the secondary messengers associated with neurotrophin signalling. HSP90 
can thus be hypothesized to play a role in bidirectional RGC axonal protein transport [42].

We found an opposite picture in the capillary endothelium. Namely, overexpression of HSP70 
with prolongation of the experiment time, which, as we hypothesize, is caused to maintain the integrity 
of the blood-brain barrier under stressful conditions. Namely, overexpression of HSP70 with prolonga-
tion of the experiment time, which, as we hypothesize, is caused to maintain the integrity of the blood-
brain barrier under stressful conditions. We came to this conclusion based on its functions. In addition 
to blocking the caspase-dependent apoptosis pathway mentioned above, Hsp70 can directly bind the 
apoptosis-inducing factor (AIF), thereby preventing the caspase-independent apoptosis pathway [43]. 
The mechanism for triggering apoptosis by AIF is the activation of an endonuclease that cleaves nuclear 
DNA [44]. Kondrikov D. and others have shown that increased expression of Hsp70 under conditions 
of hyperoxia protects endothelial cells by inhibiting the AIF-dependent pathway of apoptosis [45]. The 
current result of our study is consistent with the conclusion of R. R. Shivers and co-authors [46], who 
demonstrated the in vitro induction of HSP70, HSP90 and HSP100 in endothelial cells of the brain mi-
crovessels in response to heat shock. They also notice – inhibition of further tight junction assembly and 
the disappearance and/or disassembly of tight junctions in primary cultures of bovine brain microvessel 
endothelial cells. It should be noted that the endothelial cells of the microvessels of the brain, together 
with astrocytes and pericytes, form both the blood-brain and internal blood-retinal barriers, and a vio-
lation of the relationship between them can lead to an increase in the permeability of these barriers for 
macromolecules and fluid from the blood to the retina and optic nerve [47].

More recently, it has been reported that mitochondria play a key role in maintaining the 
integrity of the blood-brain barrier (BBB) in vitro. Immunocytochemical analysis revealed that the 
normally well-defined, linear cell-cell junctions were disrupted when oxidative phosphorylation 
was inhibited by mitochondrial inhibitors [48]. It has long been suggested that mitochondrial dys-
function is associated with developing neurodegenerative diseases [49, 50].

Study limitation. Our study were limited by study of optic nerve heat shock proteins ex-
pression (HSP70, HSP90α) under the influence Cr(VI).

Prospects for further research. In the future, it is necessary to experimentally investigate 
and determine changes in the retina of the eye under the influence of Cr (VI), taking into account 
the fact that the optic nerve is formed by axons of cells whose bodies are located in the ganglion 
layer of the retina. 

5. Conclusions
1. Our study provides an insight into the significant difference in the immunoreactivity of 

heat shock proteins of the HSP70 and HSP90α families in neuroglia and endothelial cells of the 
optic nerve capillaries under the influence of Cr(VI).
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2. The results obtained suggest that Cr (VI) has a neurotoxic effect on the optic nerve with 
the development of edema, which is manifested by the thickening of nerve fibers. A comparison of 
the dynamics of the development of the dystrophic process in the optic nerve with the results of the 
immunohistochemical analysis showed, that an increase in the thickness of nerve fibers is accom-
panied by an increase in immunoreactive neuroglial cells (HSP90α) and endothelial cells (HSP70).
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