STUDY OF THE KINETICS OF DRYING IRON (II) SULFATE HEPTAHYDRATE BY FILTRATION METHOD

Keywords: Titanium (IV) oxide, iron (II) sulfate heptahydrate, ferrous sulfate, filtration drying, crystal dehydration, drying kinetics

Abstract

The object of research: kinetics of filtration drying process of iron (II) sulfate heptahydrate.

Solved problem: to obtain the calculated dependence of the kinetics of filtration drying, which predicts the nature of the change in the moisture content of the material in time during the period of complete saturation of the thermal agent with moisture in the range of heights of the material layer 30.10-3–120.10-3 m and the speeds of the thermal agent 0.46–1.61 m/s.

Main scientific results: The kinetics of filtration drying of iron (II) sulfate heptahydrate was investigated at different heights of the material layer and pressure drops over dry material, which means at different speeds of movement of the thermal agent. A certain critical moisture content, which is Wcr=0.065 kg H2O/kg dry mat and the time it reaches at different heights of the material layer and the speeds of movement of the thermal agent. Based on the solution of the system of differential equations of material balance in the layer and the kinetics of drying, the kinetic coefficients for iron (II) sulfate heptahydrate a=15.75 1/m, α=3.03.10-3 1/s were determined, which made it possible to obtain the calculated dependence of the kinetics drying, which predicts the nature of the change in the moisture content of the material over time during the period of complete saturation of the thermal agent with moisture in the range of heights of the material layer H=30.10-3–120.10-3 m and the velocities of the thermal agent υ=0.46–1.61 m/s.

The area of practical application of the results: enterprises for the production of titanium (IV) oxide with the production of iron (II) sulfate heptahydrate as a by-product and enterprises specializing in the manufacture of pigments based on iron (II) sulfate heptahydrate.

Innovative technological product: iron (II) sulfate tetrahydrate (FeSO4•4H2O, rosenite), obtained as a result of drying by the filtration method.

Scope of application of the innovative technological product: in the production technology of iron oxide pigments.

Downloads

Download data is not yet available.

Author Biographies

Nadiia Tsiura, Lviv Polytechnic National University

Department of Chemical Engineering

Institute of Chemistry and Chemical Technology

Diana Kindzera, Lviv Polytechnic National University

Department of Chemical Engineering

Institute of Chemistry and Chemical Technology

Iryna Huzova, Lviv Polytechnic National University

Department of Chemical Engineering

Institute of Chemistry and Chemical Technology

Volodymyr Atamanyuk, Lviv Polytechnic National University

Department of Chemical Engineering

Institute of Chemistry and Chemical Technology

References

Savchenko-Pererva, M. V., Barsukova, H. Y. (2020). Reducing the technogenic load on the environment due to the technical solution for the disposal of iron sulphate. Journal of Chemistry and Technologies, 28 (2), 168–176. doi: http://doi.org/10.15421/082018

Kanari, N., Filippova, I., Diot, F., Mochón, J., Ruiz-Bustinza, I., Allain, E., Yvon, J. (2014). Utilization of a waste from titanium oxide industry for the synthesis of sodium ferrate by gas–solid reactions. Thermochimica Acta, 575, 219–225. doi: http://doi.org/10.1016/j.tca.2013.11.008

Kanari, N., Evrard, O., Neveux, N., Ninane, L. (2001). Recycling ferrous sulfate via super-oxidant synthesis. JOM, 53 (11), 32–33. doi: http://doi.org/10.1007/s11837-001-0191-8

Chio, C. H., Sharma, S. K., Muenow, D. W. (2006). The hydrates and deuterates of ferrous sulfate (FeSO4): a Raman spectroscopic study. Journal of Raman Spectroscopy, 38 (1), 87–99. doi: http://doi.org/10.1002/jrs.1623

Kanari, N., Filippova, I., Diot, F., Mochón, J., Ruiz-Bustinza, I., Allain, E., Yvon, J. (2014). Utilization of a waste from titanium oxide industry for the synthesis of sodium ferrate by gas–solid reactions. Thermochimica Acta, 575, 219–225. doi: http://doi.org/10.1016/j.tca.2013.11.008

Rachkova, E. A., Jakusheva, E. A. (1990). Ispol'zovanie sernokislogo zheleza na biohimicheskoj ustanovke. Koks i himija, 8, 45–46.

Glouannec, P., Salagnac, P., Guézenoc, H., Allanic, N. (2008). Experimental study of infrared-convective drying of hydrous ferrous sulphate. Powder Technology, 187 (3), 280–288. doi: http://doi.org/10.1016/j.powtec.2008.03.007

Kruhlova, N. O., Bakhariev, V. S. (2015). Ekolohichno bezpechna tekhnolohiia pererobky shlamiv vyrobnytstva tytanooksydnykh pihmentiv. Ekolohichna bezpeka, 2 (20), 69–76.

Skomorokha, V. N., Zarechnii, V. G., Vorobeva, I. P. (2002). Proizvodstvo dvuokisi titana pigmentnoi sulfatnym sposobom. Sumy, 203.

Kruhlova, N. O. (2014). Utylizatsiia shlamiv vyrobnytstva tytanooksydnykh pihmentiv yak zasib znyzhennia tekhnohennoho navantazhennia na dovkillia. Shostka, 160.

Yavorskyi, V. T., Kalymon, Ya. A., Rubai, O. I. (2015). A study of the effect of iron (III) compoundson oxidation of iron (II) ions by atmospheric oxygen. Eastern-European Journal of Enterprise Technologies, 4 (6 (76)), 13–17. doi: http://doi.org/10.15587/1729-4061.2015.47460

Zarechenyi, V. H. (2005). Utylizatsiia zalizovmisnykh vidkhodiv vyrobnytstva pihmentnoho tytanu(IV) oksydu. Lviv, 20.

Sobol, Kh. S., Markiv, T. Ye., Sanytskyi, M. A., Kohuch, H. V. (2003). Vplyv aktyvnykh mineralnykh dodatkiv na vlastyvosti kompozytsiinykh tsementiv. Visnyk Natsionalnoho universytetu Lvivska politekhnika”. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia”, 488, 274–278.

Huang, P., Deng, S., Zhang, Z., Wang, X., Chen, X., Yang, X., Yang, L. (2015). A sustainable process to utilize ferrous sulfate waste from titanium oxide industry by reductive decomposition reaction with pyrite. Thermochimica Acta, 620, 18–27. doi: http://doi.org/10.1016/j.tca.2015.10.004

Plyshevskii, Iu. S., Tkachov K. V., Garkunov N. V. (1998). Ispolzovanie zheleznogo kuporosa – otkhoda, obrazuiuschegosia v protsesse polucheniia dioksida titana i travleniia zheleza dlia polucheniia sulfata kaliia i «zheleznogo» koagulianta. Ekaterinburg, 110.

Karpovich, E. A., Zarechennii, V. G. (2001). Vovlechenie v proizvodstvo udobrenii kislogo zheleznogo kuporosa. Ekologiia i zdorove cheloveka. Okhrana vodnogo i vozdushnogo basseinov. Utilizatsiia otkhodov, 2, 396–398.

Ivanov, V. G. (2004). Utilizatsiia otkhodov sulfata zheleza. Sotrudnechestvo dlia reshenmia problem otkhodov. Kharkiv, 162–163.

Georgiou, D., Aivazidis, A., Hatiras, J., Gimouhopoulos, K. (2003). Treatment of cotton textile wastewater using lime and ferrous sulfate. Water Research, 37 (9), 2248–2250. doi: http://doi.org/10.1016/s0043-1354(02)00481-5

Barsukova, A. V., Vakal, S. V., Karpovich, E. A. (2014). Determination of optimal conditions for technology main waste processing titanium production. Izvestiia MGTU, 2 (20), 97–101.

Wang, T., Debelak, K. A., Roth, J. A. (2007). Dehydration of iron(II) sulfate heptahydrate. Thermochimica Acta, 462 (1-2), 89–93. doi: http://doi.org/10.1016/j.tca.2007.07.001

Guarini, G. G. T., Rustici, M. (1988). Heating rate and the dehydration of α•NiSO4•6H2O single crystals. Journal of Thermal Analysis, 34 (2), 487–495. doi: http://doi.org/10.1007/bf01913189

Straszko, J., Olszak-Humienik, M., Możejko, J. (1997). Kinetics of thermal decomposition of ZnSO4•7H2O. Thermochimica Acta, 292 (1-2), 145–150. doi: http://doi.org/10.1016/s0040-6031(96)03114-0

Korinchuk D., Sniezhkin Yu., Bunetskyi. V. (2018). Justification energy-efficient modes of drum dryer operation in production of composite biofuels. Scientific Works, 82 (1). doi: http://doi.org/10.15673/swonaft.v82i1.1017

Tkachuk, M., Stepaniuk, A. (2019). Modernizatsiia barabannoi susharky ustanovky vyrobnytstva morskoi soli. Nauka onlain, 9. Available at: https://nauka-online.com/ua/publications/tehnicheskie-nauki/2019/9/modernizatsiya-barabannoyi-susharki-ustanovki-virobnitstva-morskoyi-soli/

Nizov, V. A., Aisautova, K. A. (2017). Osobennosti obezvozhivaniia kristallogidratov v mikrovolnovom pole na primere mednogo kuporosa. Young Scientist, 9 (143), 111–112.

Hosovskyi, R., Kindzera, D., Atamanyuk, V. (2016). Diffusive Mass Transfer during Drying of Grinded Sunflower Stalks. Chemical Technology and Engineering. Lviv, 105–108. doi: http://doi.org/10.23939/cte2019.01.105

Hosovskyi, R. R., Kindzera, D. P., Atamanyuk, V. M. (2017). The intradiffusion mass transfer during the grinded sunflower stems paranchymal tissue's filtration drying. Scientific Bulletin of UNFU, 27 (6), 112–116. doi: http://doi.org/10.15421/40270622

Atamaniuk, V., Humnytskyi, Ya. (2013). Naukovi osnovy filtratsiinoho sushinnia dyspersnykh materialiv. Lviv: Vyd-vo Lviv. politekhniky, 255.

Xia, L., Zhang, H., Wang, B., Yu, C., Fan, X. (2016). Experimental and numerical analysis of oil shale drying in fluidized bed. Drying Technology, 35 (7), 802–814. doi: http://doi.org/10.1080/07373937.2016.1218345

Guo, F., Liu, H., Guo, Y., Zhang, Y., Li, J., Zhao, X., Wu, J. (2021). Occurrence modes of water in gasification fine slag filter cake and drying behavior analysis – A case study. Journal of Environmental Chemical Engineering, 9 (1), 104585. doi: http://doi.org/10.1016/j.jece.2020.104585

Liu, R., Liu, M., Han, X., Yan, J. (2020). Drying characteristics and kinetics analyses for Yimin lignite at various temperatures. Drying Technology, 1–13. doi: http://doi.org/10.1080/07373937.2020.1729174

Li, C., Liao, J.-J., Yin, Y., Mo, Q., Chang, L.-P., Bao, W.-R. (2018). Kinetic analysis on the microwave drying of different forms of water in lignite. Fuel Processing Technology, 176, 174–181. doi: http://doi.org/10.1016/j.fuproc.2018.03.017


👁 63
⬇ 37
Published
2021-02-03
How to Cite
Tsiura, N., Kindzera, D., Huzova, I., & Atamanyuk, V. (2021). STUDY OF THE KINETICS OF DRYING IRON (II) SULFATE HEPTAHYDRATE BY FILTRATION METHOD. ScienceRise, (1), 11-21. https://doi.org/10.21303/2313-8416.2021.001583
Section
Innovative technologies in industry