Results of using 3-D simulation methods in treatment of midfacial fractures

Keywords: traumatic fractures of the middle zone of the face, bone metal osteosynthesis, open reposition, titanium miniplates, intraoral access, CAD / CAM systems, computed tomography, SLM technology, 3D simulated titanium mini-plates / grids

Abstract

The article publishes the results of treatment of 27 patients with fractures of the face middle area, of which 14 used standard titanium mini-plates to reposition the fragments, and 13 – individual 3D simulated titanium mini-plates / grids. Before and after treatment, its effectiveness was assessed by the values of the displacements of bone fragments and the index of the visual-analog scale, which allows determining the functional and cosmetic effect of the surgery. It was found that the use of individual 3D simulated titanium mini-plates / grids allowed obtaining in 85 % of patients displacements not exceeding 3 mm. In 72 % of patients in whom standard titanium mini-plates were used, the displacement after surgery was 3.1–6 mm, which is significantly greater than in the group with individual modeling of structures.

On the 7th day after surgery in the first group (treatment with standard mini-plates), the index on the visual-analog scale was 11 (7; 13), which was significantly (p=0.00147) less than before surgery. In the second group (treatment using individual 3D simulated titanium mini-plates / grids) the index on the visual analog scale was 4 (6; 8) points, which was significantly (Z=3.3; p=0.00098) less than before surgery. Comparison of the visual-analog scale of the first and second groups on the 7th day after surgery revealed the presence of significant (U=2.47; p=0.013) differences. The obtained results testify to the greater efficiency of individual 3D modeled titanium mini-plates / grids in comparison with standard titanium mini-plates.

The object of the research: fractures of the middle area of the face. Comparison of the visual-analog scale of the first and second groups on the 7th day after surgery revealed the presence of significant (U=2.47; p=0.013) differences.

Investigated problem: the comparative evaluation of the effectiveness of the middle area of the face fractures treatment using individual 3D simulated titanium mini-plates / grids and standard titanium mini-plates.

The main scientific results: Optimizing the treatment of fractures of the face middle area will help to achieve good cosmetic and functional results.

The area of practical use of the research results: Department of Surgical Dentistry and Maxillofacial Surgery.

Innovative technological product: The proposed technique using individual 3D-simulated titanium miniplates will help to optimize the treatment of patients with traumatic fractures of the face middle area.

Scope of the innovative technological product: Clinical practice.

Downloads

Download data is not yet available.

Author Biographies

Anton Khudyk, Kharkiv National Medical University

Department of Surgical Dentistry and Maxillofacial Surgery

Sergey Grigorov, Kharkiv National Medical University

Department of Surgical Dentistry and Maxillofacial Surgery

References

Juncar, M., Tent, P. A., Juncar, R. I., Harangus, A., Mircea, R. (2021). An epidemiological analysis of maxillofacial fractures: a 10-year cross-sectional cohort retrospective study of 1007 patients. BMC Oral Health, 21 (1). doi: http://doi.org/10.1186/s12903-021-01503-5

Ahmed, D. R., Dhasarathan, P., Muthusekhar, D. (2020). Incidence and etiology of midface fracture: a retrospective study. Annals of Tropical Medicine and Health, 23, 232–315.

Yu, M., Wang, S.-M. (2021). Anatomy, Head and Neck, Zygomatic. StatPearls. Available at: https://pubmed.ncbi.nlm.nih.gov/31334977/

Louis, M., Agrawal, N., Truong, T. A. (2017). Facial Trauma: Midface Fractures II. Seminars in plastic surgery, 31 (2), 94–99. doi: http://doi.org/10.1055/s-0037-1601373

Hardt, N., Kuttenberger, J. (2010). Mechanisms of craniofacial fractures. Craniofacial Trauma. Springer, Berlin, Heidelberg, 55–61. doi: http://doi.org/10.1007/978-3-540-33041-7_4

Kuzenko, Ye. V., Skydanenko, M. S., Moskalenko, R. A., Lyndin, M. S., Sikora, V. V., Hudymenko, O. O., et. al. (2018). Doslidzhennia zmin u kistkakh pry perelomakh za umov vykorystannia nanomaterialiv dlia metal-osteosyntezu z urakhuvanniam funktsii miazovoho aparatu. Available at: https://essuir.sumdu.edu.ua/bitstream-download/123456789/73095/1/Kuzenko_1415.pdf

Krause, M., Hümpfner-Hierl, H., Völker, L., Hierl, T., Pausch, N. C. (2017). A new approach to treat bone gaps after midfacial and zygomatic fractures with a collagen membrane. Oral and Maxillofacial Surgery, 21 (4), 439–446. doi: http://doi.org/10.1007/s10006-017-0652-z

Panicker, P., Mohan, S., Nallusamy, J., Lakshmi, S., Johny, J., Bhaskaran, M. (2020). Reconstruction of craniofacial bone defects with autologous human bone marrow stem cells and autogenous bone grafts: A case report with review of literature. Journal of Pharmacy And Bioallied Sciences, 12 (5), 394. doi: http://doi.org/10.4103/jpbs.jpbs_116_20

Jensen, S. S., Terheyden, H. (2009). Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials. Database of Abstracts of Reviews of Effects (DARE): Quality-Assessed Reviews. Available at: https://www.ncbi.nlm.nih.gov/books/NBK77628/

Kozlov, V. A., Kagan, I. I., Matchin, A. A., CHemezov, S. V.; Kozlov, V. A., Kagan, I. I. (Eds.) (2014). Operativnaia cheliustno-litsevaia khirurgiia i stomatologiia. Moscow: GEOTAR-MEDIA, 544.

Malanchuk, V. O., Astapenko, O. O. (2014). Rezultaty khirurhichnoho likuvannia khvorykh iz perelomamy ta deformatsiiamy kistok lytsevoho cherepa iz zastosuvanniam riznykh fiksatoriv dlia osteosyntezu. Visnyk stomatolohii, 4, 39–44.

Gareb, B., Roossien, C. C., van Bakelen, N. B., Verkerke, G. J., Vissink, A., Bos, R. R. M., van Minnen, B. (2020). Comparison of the mechanical properties of biodegradable and titanium osteosynthesis systems used in oral and maxillofacial surgery. Scientific Reports, 10 (1). doi: http://doi.org/10.1038/s41598-020-75299-9

Vares, Ya. E. (2009). Paramedian fractures of the mandible. Modern views on a surgical treatment. Ukrainskyi morfolohichnyi almanakh, 7 (2), 19–21.

Komok, O. A., Malevych, O. Ye., Marikutsa, B. I. (2001). Pat. No. 39746 A UA. Supraosteal plate for osteosynthesis of mandibulary fracture. MPK: А61В 17/58, А61В 17/064. No. 2001010705; declareted: 31.01.2001; published: 15.06.2001, Bul. No. 5.

Timofeev, A. A. (2020). Cheliustno-litsevaia khirurgiia i khirurgicheskaia stomatologiia. Book 1. Kyiv: VSI «Meditsina», 992.

Erol, B., Tanrikulu, R., Görgün, B. (2004). Maxillofacial Fractures. Analysis of demographic distribution and treatment in 2901patients (25-year experience). Journal of Cranio-Maxillofacial Surgery, 32 (5), 308–313. doi: http://doi.org/10.1016/j.jcms.2004.04.006

Riviș, M., Roi, C., Roi, A., Nica, D., Văleanu, A., Rusu, L.-C. (2020). The Implications of Titanium Alloys Applied in Maxillofacial Osteosynthesis. Applied Sciences, 10 (9), 3203. doi: http://doi.org/10.3390/app10093203

Costan, V. V., Nicolau, A., Sulea, D., Ciofu, M. L., Boișteanu, O., Popescu, E. (2021). The Impact of 3D Technology in Optimizing Midface Fracture Treatment—Focus on the Zygomatic Bone. Journal of Oral and Maxillofacial Surgery, 79 (4), 880–891. doi: http://doi.org/10.1016/j.joms.2020.11.004

Sikora, M., Chęciński, M., Sielski, M., Chlubek, D. (2020). The Use of 3D Titanium Miniplates in Surgical Treatment of Patients with Condylar Fractures. Journal of Clinical Medicine, 9 (9), 2923. doi: http://doi.org/10.3390/jcm9092923

Gray, R., Gougoutas, A., Nguyen, V., Taylor, J., Bastidas, N. (2017). Use of three-dimensional, CAD/CAM-assisted, virtual surgical simulation and planning in the pediatric craniofacial population. International Journal of Pediatric Otorhinolaryngology, 97, 163–169. doi: http://doi.org/10.1016/j.ijporl.2017.04.004

Vignesh, U., Mehrotra, D., Anand, V., Howlader, D. (2017). Three dimensional reconstruction of late post traumatic orbital wall defects by customized implants using CAD-CAM, 3D stereolithographic models: A case report. Journal of Oral Biology and Craniofacial Research, 7 (3), 212–218. doi: http://doi.org/10.1016/j.jobcr.2017.09.004

Dreizin, D., Nam, A. J., Hirsch, J., Bernstein, M. P. (2018). New and emerging patient-centered CT imaging and image-guided treatment paradigms for maxillofacial trauma. Emergency Radiology, 25 (5), 533–545. doi: http://doi.org/10.1007/s10140-018-1616-9

Voloshan, O. O., Grigorov, S. M., Demyanyk, D. S. (2020). Development and analysis of diagnostic criteria for creation of an automated computer software for predicting the course and individualizing the treatment of patients with odontogenic maxillary sinusitis. Wiadomości Lekarskie, 73 (4), 767–772. doi: http://doi.org/10.36740/wlek202004127

Vasylenko, I. V., Hryhorov, S. M., Khudyk, A. K. (2021). Pat. No. 145754 UA. Sposib likuvannia travmatychnykh perelomiv kistok shchelepno-lytsevoi dilianky u doroslykh z vykorystanniam nakistkovoho osteosyntezu 3D modelovanymy tytanovymy miniplastynamy. MPK: A61B 17/58 (2006.01), A61C 3/00, A61C 8/00, A61C 11/00. No. a201807783; declareted: 11.07.2018; published: 06.01.2021, Bul. No. 1.

Moreira Marinho, R. O., Freire-Maia, B. (2013). Management of Fractures of the Zygomaticomaxillary Complex. Oral and Maxillofacial Surgery Clinics of North America, 25 (4), 617–636. doi: http://doi.org/10.1016/j.coms.2013.07.011

Das, A. K., Bandopadhyay, M., Chattopadhyay, A., Biswas, S., Saha, A., Balkrishna, U. M., Nair, V. (2015). Clinical evaluation of neurosensory changes in the infraorbital nerve following surgical management of zygomatico-maxillary complex fractures. Journal of Clinical and Diagnostic Research, 9, 54–58. doi: http://doi.org/10.7860/jcdr/2015/16511.7008

Lee, E., Mohan, K., Koshy, J., Hollier, L. (2010). Optimizing the Surgical Management of Zygomaticomaxillary Complex Fractures. Seminars in Plastic Surgery, 24 (4), 389–397. doi: http://doi.org/10.1055/s-0030-1269768

Ellis, E., Perez, D. (2014). An Algorithm for the Treatment of Isolated Zygomatico-Orbital Fractures. Journal of Oral and Maxillofacial Surgery, 72 (10), 1975–1983. doi: http://doi.org/10.1016/j.joms.2014.04.015

Kotrashetti, S. M., Kale, T. P., Bhandage, S., Kumar, A. (2015). Infraorbital nerve transpositioning into orbital floor: a modified technique to minimize nerve injury following zygomaticomaxillary complex fractures. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 41 (2), 74–77. doi: http://doi.org/10.5125/jkaoms.2015.41.2.74

Yao, B., He, Y., Jie, B., Wang, J., An, J., Guo, C., Zhang, Y. (2019). Reconstruction of Bilateral Post-Traumatic Midfacial Defects Assisted by Three-Dimensional Craniomaxillofacial Data in Normal Chinese people—A Preliminary Study. Journal of Oral and Maxillofacial Surgery, 77 (11), 2302.e1–2302.e13. doi: http://doi.org/10.1016/j.joms.2019.04.030


👁 26
⬇ 23
Published
2021-04-30
How to Cite
Khudyk, A., & Grigorov, S. (2021). Results of using 3-D simulation methods in treatment of midfacial fractures. ScienceRise, (2), 54-65. https://doi.org/10.21303/2313-8416.2021.001727
Section
Innovative technologies in healthcare