THERMODYNAMIC, THERMAL AND ELASTIC PROPERTIES OF TITANIUM NITRIDE TiN: COMPARISON OF VARIOUS DATA AND DETERMINATION OF THE MOST RELIABLE VALUES

Keywords: titanium nitride, thermodynamic properties, heat capacity, thermal indicators, thermal expansion, mechanical parameters, bulk modulus, calculation methods

Abstract

The analysis of literary data on thermodynamic, thermal and elastic properties of titanium nitride TiN which included values Debye temperature θD, volume coefficient of thermal expansion αV and bulk modulus B under standard conditions is carried out. It has been shown that the known data have a significant spread of values from 20 to 43 %. The 8 most rational variants of optimizing calculations are proposed, which make it possible to reveal the most reliable values of some TiN parameters. At the same time, the minimum and maximum values of θD and αV were used from literary sources, as well as the least contradictory data on isobaric heat capacity Cp, melting temperature Tm.p and density d of TiN. To improve the calculated results, the values of θD(TiN) determined using the methods of Magnus ‒ Lindeman and Debye were also used. The Mayer’s relation was the basic test expression. The obtained values of the bulk modulus were compared with the literature data. This made it possible to distinguish the least and most reliable values of αV and θD, as well as make a refinement correction for the last value. As a result, it was found that under standard conditions, the value of θD(TiN) close to the optimal should be within 746‒769 K, and for its isochoric heat capacity CV ‒ in the range 36.55‒37.19 J/(mol×K). The range of values, after optimization, does not exceed 3 %, unlike the 20 % available in the literature. A more accurate definition of Debye temperature for TiN needs to radically refine the values of its αV and B

Downloads

Download data is not yet available.

Author Biography

Anton Kozma, Uzhhorod National University

Department of Physical and Colloid Chemistry

References

Zhang, S., Sun, D., Fu, Y., Du, H. (2005). Toughening of hard nanostructural thin films: a critical review. Surface and Coatings Technology, 198 (1-3), 2–8. doi: https://doi.org/10.1016/j.surfcoat.2004.10.020

Houska, C. R. (1964). Thermal expansion and atomic vibration amplitudes for TiC, TiN, ZrC, ZrN, and pure tungsten. Journal of Physics and Chemistry of Solids, 25 (4), 359–366. doi: https://doi.org/10.1016/0022-3697(64)90001-0

Ajami, F. I., MacCrone, R. K. (1974). Thermal expansion, Debye temperature and Gruneisen constant of carbides and nitrides. Journal of the Less Common Metals, 38 (2-3), 101–110. doi: https://doi.org/10.1016/0022-5088(74)90053-8

Seifitokaldani, A., Gheribi, A. E., Dollé, M., Chartrand, P. (2016). Thermophysical properties of titanium and vanadium nitrides: Thermodynamically self-consistent approach coupled with density functional theory. Journal of Alloys and Compounds, 662, 240–251. doi: https://doi.org/10.1016/j.jallcom.2015.12.013

Mohammadpour, E., Altarawneh, M., Al-Nu’airat, J., Jiang, Z.-T., Mondinos, N., Dlugogorski, B. Z. (2018). Thermo-mechanical properties of cubic titanium nitride. Molecular Simulation, 44 (5), 415–423. doi: https://doi.org/10.1080/08927022.2017.1393810

Aigner, K., Lengauer, W., Rafaja, D., Ettmayer, P. (1994). Lattice parameters and thermal expansion of Ti(CxN1−x), Zr(CxN1−x), Hf(CxN1−x) and TiN1−x from 298 to 1473 K as investigated by high-temperature X-ray diffraction. Journal of Alloys and Compounds, 215 (1-2), 121–126. doi: https://doi.org/10.1016/0925-8388(94)90828-1

Pierson, H. O. (1996). Handbook of refractory carbides and nitrides: Properties, characteristics, processing and applications. William Andrew Inc., 362.

Eroglu, S., Gallois, B. (1993). Residual stresses in chemically vapor deposited coatings in the Ti-C-N system. Le Journal de Physique IV, 03 (C3), C3-155–C3-162. doi: https://doi.org/10.1051/jp4:1993319

Brik, M. G., Ma, C.-G. (2012). First-principles studies of the electronic and elastic properties of metal nitrides XN (X=Sc, Ti, V, Cr, Zr, Nb). Computational Materials Science, 51 (1), 380–388. doi: https://doi.org/10.1016/j.commatsci.2011.08.008

Adhikari, V., Szymanski, N. J., Khatri, I., Gall, D., Khare, S. V. (2019). First principles investigation into the phase stability and enhanced hardness of TiN-ScN and TiN-YN alloys. Thin Solid Films, 688, 137284. doi: https://doi.org/10.1016/j.tsf.2019.05.003

Isaev, E. I., Simak, S. I., Abrikosov, I. A., Ahuja, R., Vekilov, Y. K., Katsnelson, M. I. et. al. (2007). Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study. Journal of Applied Physics, 101 (12), 123519. doi: https://doi.org/10.1063/1.2747230

Hu, Q.-M., Kádas, K., Hogmark, S., Yang, R., Johansson, B., Vitos, L. (2008). Hardness and elastic properties of covalent/ionic solid solutions from first-principles theory. Journal of Applied Physics, 103 (8), 083505. doi: https://doi.org/10.1063/1.2904857

Djemia, P., Benhamida, M., Bouamama, K., Belliard, L., Faurie, D., Abadias, G. (2013). Structural and elastic properties of ternary metal nitrides TixTa1−xN alloys: First-principles calculations versus experiments. Surface and Coatings Technology, 215, 199–208. doi: https://doi.org/10.1016/j.surfcoat.2012.09.059

Holec, D., Friák, M., Neugebauer, J., Mayrhofer, P. H. (2012). Trends in the elastic response of binary early transition metal nitrides. Physical Review B, 85 (6), 064101. doi: https://doi.org/10.1103/physrevb.85.064101

Chen, D., Chen, J., Zhao, Y., Yu, B., Wang, C., Shi, D. (2009). Theoretical study of the elastic properties of titanium nitride. Acta Metallurgica Sinica (English Letters), 22 (2), 146–152. doi: https://doi.org/10.1016/s1006-7191(08)60082-4

Shebanova, O., Soignard, E., McMillan, P. F. (2006). Compressibilities and phonon spectra of high-hardness transition metal-nitride materials. High Pressure Research, 26 (2), 87–97. doi: https://doi.org/10.1080/08957950600765186

Sangiovanni, D. G., Chirita, V., Hultman, L. (2010). Electronic mechanism for toughness enhancement inTixM1−xN(M=Mo and W). Physical Review B, 81 (10), 104107. doi: https://doi.org/10.1103/physrevb.81.104107

Yu, S., Zeng, Q., Oganov, A. R., Frapper, G., Zhang, L. (2015). Phase stability, chemical bonding and mechanical properties of titanium nitrides: a first-principles study. Physical Chemistry Chemical Physics, 17 (17), 11763–11769. doi: https://doi.org/10.1039/c5cp00156k

Kim, J. O., Achenbach, J. D., Mirkarimi, P. B., Shinn, M., Barnett, S. A. (1992). Elastic constants of single‐crystal transition‐metal nitride films measured by line‐focus acoustic microscopy. Journal of Applied Physics, 72 (5), 1805–1811. doi: https://doi.org/10.1063/1.351651

Goupy, J., Djemia, P., Pouget, S., Belliard, L., Abadias, G., Villégier, J. C. et. al. (2013). Structure, electrical conductivity, critical superconducting temperature and mechanical properties of TiNxOy thin films. Surface and Coatings Technology, 237, 196–204. doi: https://doi.org/10.1016/j.surfcoat.2013.09.019

Wolf, W., Podloucky, R., Antretter, T., Fischer, F. D. (1999). First-principles study of elastic and thermal properties of refractory carbides and nitrides. Philosophical Magazine B, 79 (6), 839–858. doi: https://doi.org/10.1080/13642819908214844

Morachevskiy, A. G., Sladkov, I. B. (1985). Termodinamicheskie raschety v metallurgii. Spravochnik. Moscow: Metallurgiya, 136.

Levanov, A. V., Antipenko, E. E. (2006). Opredelenie termodinamicheskih svoystv statisticheskimi metodami. Real'nye gazy. Zhidkosti. Tverdye tela. Moscow: MGU im. M.V. Lomonosova, 40.

Kilpatrick, J. E., Sherman, R. H. (1964). Six-place tables of the Debye functions (E-E0)/3RT, CV/3R, and S/3R. Los Alamos: Scientific Laboratory of the University of California, 64.

Kozma, A. A. (2019). Advantages of Using Semi-Empirical Methods in Teaching Students at the Faculty of Chemistry of Uzhhorod National University. International Journal of Education and Science, 2 (2), 22. doi: https://doi.org/10.26697/ijes.2019.2.09

Stepanov, I. A. (2016). The isochoric heat capacity of ZrW2O8 and Sc2W3O12 is greater than their isobaric one. Materials Letters, 177, 112–115. doi: https://doi.org/10.1016/j.matlet.2016.04.153

Ledbetter, H. M. (1980). Sound velocities and elastic-constant averaging for polycrystalline copper. Journal of Physics D: Applied Physics, 13 (10), 1879–1884. doi: https://doi.org/10.1088/0022-3727/13/10/017

Lengauer, W., Binder, S., Aigner, K., Ettmayer, P., Guillou, A., Debuigne, J., Groboth, G. (1995). Solid state properties of group IVb carbonitrides. Journal of Alloys and Compounds, 217 (1), 137–147. doi: https://doi.org/10.1016/0925-8388(94)01315-9

Barin, I. (1995). Thermochemical Data of Pure Substances. John Wiley & Sons. doi: https://doi.org/10.1002/9783527619825

Lide, D. R. (Ed.) (2003–2004). Handbook of Chemistry and Physics. CRC Press.


👁 24
⬇ 15
Published
2020-11-30
How to Cite
Kozma, A. (2020). THERMODYNAMIC, THERMAL AND ELASTIC PROPERTIES OF TITANIUM NITRIDE TiN: COMPARISON OF VARIOUS DATA AND DETERMINATION OF THE MOST RELIABLE VALUES. Technology Transfer: Fundamental Principles and Innovative Technical Solutions, 14-17. https://doi.org/10.21303/2585-6847.2020.001475